Odisha State Board BSE Odisha 9th Class Maths Solutions Algebra Chapter 4 ବୀଜଗାଣିତିକ ସମୀକରଣ Ex 4(b) Textbook Exercise Questions and Answers.
BSE Odisha Class 9 Maths Solutions Algebra Chapter 4 ବୀଜଗାଣିତିକ ସମୀକରଣ Ex 4(b)
Question 1.
ନିମ୍ନଲିଖତ ସମୀକରଣମାନଙ୍କ ମଧ୍ୟରୁ କେଉଁଟି ଦ୍ୱିଘାତ ସମୀକରଣ ନିଶ୍ଚୟ କର ।
(i) 3x2 – 4x = -4x + 5
ସମାଧାନ:
ଯେଉଁ ସମୀକରଣର ସର୍ବୋଚ୍ଚ ଘାତ 2 ତାହା ଏକ ଦ୍ଵିଘାତ ସମୀକରଣ ଅଟେ ।
3x2 – 4x = -4x + 5 ⇒ 3x2 – 5 = 0 (ଏହା ଏକ ଦ୍ଵିଘାତ ସମୀକରଣ)
(ii) x3 – 2x2 + 4 = x3 + 2x
ସମାଧାନ:
x3 – 2x2 + 4 = x3 + 2x
⇒ -2x2 – 2x + 4 = 0 ⇒ 2x2 + 2x – 4 = 0 (ଏହା ଏକ ଦ୍ଵିଘାତ ସମୀକରଣ)
(iii) x + \(\frac{3}{x}\) = x2 (x ≠ 0)
ସମାଧାନ:
x + \(\frac{3}{x}\) = x2 + 3 = x3 ⇒ x3 – x2 – 3 = 0
(ଏହି ସମୀକରଣଟିର ସର୍ବୋଚ୍ଚ ଘାତ 3 ତେଣୁ ଏହା ଏକ ଦ୍ଵିଘାତ ସମୀକରଣ ନୁହେଁ ।)
(iv) x + \(\frac{1}{x}\) = 2 (x ≠ 0)
ସମାଧାନ:
x + \(\frac{1}{x}\) = 2 ⇒ \(\frac{x^2+1}{x}\) ⇒ x2 + 1 = 2x ⇒ x2 – 2x + 1 = 0 (ଏହା ଏକ ଦ୍ଵିଘାତ ସମୀକରଣ)
(v) (x + 3)2 = 0
ସମାଧାନ:
(x + 3)2 = 0 ⇒ x2 + 6x + 9 = 0 (ଏହା ଏକ ଦ୍ଵିଘାତ ସମୀକରଣ)
(vi) \(\frac{1}{x}\) x2 + \(\frac{3}{2}\) x – \(\frac{5}{4}\) = 0
ସମାଧାନ:
\(\frac{1}{x}\) x2 + \(\frac{3}{2}\) x – \(\frac{5}{4}\) = 0
⇒ \(\frac{2 x^2+6 x-5}{4}\) ⇒ 2x2 + 6x – 5 = 0 (ଏହା ଏକ ଦ୍ଵିଘାତ ସମୀକରଣ)
(vii) 3x2 = 2x + 7
ସମାଧାନ:
3x2 = 2x + 7 ⇒ 3x2 – 2x – 7 = 0 (ଏହା ଏକ ଦ୍ଵିଘାତ ସମୀକରଣ)
(viii) (3x + 2)2 – (x + 4)2 = (x – 3)
ସମାଧାନ:
(3x + 2)2 – (x + 4)2 = (x – 3)
⇒ 9x2 + 4 + 6x- x2 – 16 – 8x = x- 3 ⇒ 8x2 – 2x – 12 = x – 3
⇒ 8x2 – 3x – 9 = 0 (ଏହା ଏକ ଦ୍ଵିଘାତ ସମୀକରଣ)
(ix) 7x2 + 9 = 0
ସମାଧାନ:
7x2 + 9 = 0 (ଏହା ଏକ ଦ୍ଵିଘାତ ସମୀକରଣ)
(x) 4x = 3 + 6x2
ସମାଧାନ:
4x = 3 + 6x2 ⇒ 6x2 – 4x + 3 = 0 (ଏହା ଏକ ଦ୍ଵିଘାତ ସମୀକରଣ)
Question 2.
ପ୍ରତ୍ୟେକ ସମୀକରଣ ପାର୍ଶ୍ଵରେ ଥିବା ସଂଖ୍ୟାମାନଙ୍କ ମଧ୍ୟରୁ କେଉଁ କେଉଁ ସଂଖ୍ୟାଦ୍ଵାରା ସମୀକରଣ ସିଦ୍ଧ ହେବ ନିର୍ଣ୍ଣୟ କର ।
ପ୍ରତ୍ୟେକ ଦ୍ୱିଘାତ ସମୀକରଣ ତାଙ୍କର ମୂଳଦ୍ଵାରା ସିଦ୍ଧ ହୁଅନ୍ତି ।
(i) x2 – 3x = 0 (0, 1, 2, 3)
ସମାଧାନ:
x2 – 3x = 0 ⇒ x (x – 3) = 0
⇒ x = 0 ବା x = 3 ∴ ଏହି ସମୀକରଣଟିର ମୂଳଦ୍ଵୟ 0 ଓ 3 ।
ବିକଳ୍ପ ସମାଧାନ:
ଏଠାରେ ଯେଉଁ ସଂଖ୍ୟାଦ୍ୱୟ ପାଇଁ ସମୀକରଣଟି ‘0’ ହେବ ସେହି ସଂଖ୍ୟାଦ୍ବୟ ଦ୍ୱିଘାତ ସମୀକରଣକୁ ସିଦ୍ଧ କରୁଛି ।
x2 – 3x = 0 (0 ଓ 3 ସମୀକରଣକୁ ସିଦ୍ଧ କରୁଛି ।)
(ii) 3x2 – 12 = 0 (1, -1, 2, -2)
ସମାଧାନ:
3x2 – 12 = 0 ⇒ 3x2 = 12 ⇒ x2 = 4
⇒ x = ±√4 = ± 2 ∴ ଏହି ସମୀକରଣଟିର ମୂଳଦ୍ଵୟ 2 ଓ -2 ।
ବିକଳ୍ପ ସମାଧାନ:
ଏଠାରେ ଯେଉଁ ସଂଖ୍ୟାଦ୍ୱୟ ପାଇଁ ସମୀକରଣଟି ‘0’ ହେବ ସେହି ସଂଖ୍ୟାଦ୍ବୟ ଦ୍ୱିଘାତ ସମୀକରଣକୁ ସିଦ୍ଧ କରୁଛି ।
3x2 – 12 = 0 (2 ଓ -2 ସମୀକରଣକୁ ସିଦ୍ଧ କରୁଛି ।)
(iii) x2 – 3x + 2 = 0 (0, 1, 2, 3)
ସମାଧାନ:
x2 – 3x + 2 = 0 ⇒ x2 – 2x – x + 2 = 0
⇒ x (x – 2) – 1 (x – 2) = 0
⇒ (x – 2)(x + 1) ⇒ x – 2 = 0 ବା x – 1 = 0 ⇒ x = 2 ବା x = 1
∴ ଏହି ସମୀକରଣଟିର ମୂଳଦ୍ଵୟ 2 ଓ 1 ।
ବିକଳ୍ପ ସମାଧାନ:
ଏଠାରେ ଯେଉଁ ସଂଖ୍ୟାଦ୍ୱୟ ପାଇଁ ସମୀକରଣଟି ‘0’ ହେବ ସେହି ସଂଖ୍ୟାଦ୍ବୟ ଦ୍ୱିଘାତ ସମୀକରଣକୁ ସିଦ୍ଧ କରୁଛି ।
x2 – 3x + 2 = 0 (2 ଓ 1 ସମୀକରଣକୁ ସିଦ୍ଧ କରୁଛି ।)
(iv) x2 + √2x – 4 = 0 (√2, -√2, 2√2, -2√2)
ସମାଧାନ:
x2 + √2x – 4 = 0 ⇒ x2 + 2√2x – √2x – 4 = 0
⇒ x (x + 2√2) – √2 (x + 2√2 ) = 0
(x + 2√2) (x – √2) = 0 ⇒ x + 2√2 =0 ବା x – √2 = 0
x = -2√2, x = √2
∴ ଏହି ସମୀକରଣଟିର ମୂଳଦ୍ଵୟ -2√2 ଓ √2 ।
ବିକଳ୍ପ ସମାଧାନ:
ଏଠାରେ ଯେଉଁ ସଂଖ୍ୟାଦ୍ୱୟ ପାଇଁ ସମୀକରଣଟି ‘0’ ହେବ ସେହି ସଂଖ୍ୟାଦ୍ବୟ ଦ୍ୱିଘାତ ସମୀକରଣକୁ ସିଦ୍ଧ କରୁଛି ।
x2 + √2x – 4 = 0 (-2√2 ଓ √2 ସମୀକରଣକୁ ସିଦ୍ଧ କରୁଛି ।)
(v) x2 – x – 2 = 0 (1, 0, -1, 2)
ସମାଧାନ:
x2 – x – 2 ⇒ x2 – 2x + x – 2 = 0 ⇒ x (x – 2) + 1(x – 2) = 0
⇒ (x – 2) (x + 1) = 0 ⇒ x – 2 = 0 ବା x + 1 = 0 ⇒ x = 2 ବା x = -1
∴ ଏହି ସମୀକରଣଟିର ମୂଳଦ୍ଵୟ 2 ଓ -1 ।
ବିକଳ୍ପ ସମାଧାନ:
ଏଠାରେ ଯେଉଁ ସଂଖ୍ୟାଦ୍ୱୟ ପାଇଁ ସମୀକରଣଟି ‘0’ ହେବ ସେହି ସଂଖ୍ୟାଦ୍ବୟ ଦ୍ୱିଘାତ ସମୀକରଣକୁ ସିଦ୍ଧ କରୁଛି ।
x2 – x – 2 = 0 (2 ଓ -1 ସମୀକରଣକୁ ସିଦ୍ଧ କରୁଛି ।)
Question 3.
ସମାଧାନ କର :
(i) 7x2 = \(\frac{1}{28}\)
ସମାଧାନ:
7x2 = \(\frac{1}{28}\)
⇒ x2 = \(\frac{1}{196}\)
⇒ x = ± \(\sqrt{\frac{1}{196}}=\pm \frac{1}{14}\)
∴ ନିର୍ଣ୍ଣେୟ ସମାଧାନ \(\frac{1}{14}\) ଓ \(\frac{-1}{14}\) ।
(ii) 5x2 = 3x
ସମାଧାନ:
5x2 = 3x
⇒ 5x2 – 3x = 0
⇒ x (5x – 3) = 0
⇒ x = 0 କିମ୍ବ। 5x – 3 = 0
⇒ x = 0 କିମ୍ବ। x = \(\frac{3}{4}\)
∴ ନିର୍ଣ୍ଣେୟ ସମାଧାନ 0 ଓ \(\frac{3}{4}\) ।
(iii) x2 – 3x + 2 = 0
ସମାଧାନ:
x2 – 3x + 2 = 0
⇒ x2 – 2x – x + 2 = 0
⇒ x (x – 2) – 1 (x – 2) = 0
⇒ (x – 2) (x – 1) = 0
⇒ x -2 = 0 କିମ୍ବ। x – 1 = 0
⇒ x = 2 କିମ୍ବ। x = 1
∴ ନିର୍ଣ୍ଣେୟ ସମାଧାନ 2 ଓ 1
(iv) (x + 1) (x + 2) = 30
ସମାଧାନ:
(x + 1) (x + 2) = 30
⇒ x2 + x + 2x + 2 – 30 = 0
⇒ x2 + 3x – 28 = 0
⇒ x2 + 7x – 4x – 28 = 0
⇒ x (x + 7) – 4 (x + 7) = 0
⇒ (x + 7) (x – 4) = 0
⇒ x + 7 = 0 କିମ୍ବ। x – 4 = 0
⇒ x = -7 କିମ୍ବ। x = 4
∴ ନିର୍ଣ୍ଣେୟ ସମାଧାନ -7 ଓ 4
(v) √3x2 – x – 2√3 = 0
ସମାଧାନ:
√3x2 – x – 2√3 = 0
⇒ √3x2 – 3x + 2x – 2√3 = 0
⇒ √3x (x – √3) + 2 (x – √3) = 0
⇒ (x – √3)(√3x + 2) = 0
⇒ x – √3 = 0 √3x +2 = 0
⇒ x = √3 କିମ୍ବ। x = \(\frac{-2}{\sqrt{3}}\)
∴ ନିର୍ଣ୍ଣେୟ ସମାଧାନ √3 ଓ \(\frac{-2}{\sqrt{3}}\)
(vi) 2x2 – 5x – 3 = 0
ସମାଧାନ:
2x2 – 5x – 3 = 0
⇒ 2x2 – 6x + x – 3 = 0
⇒ 2x (x – 3) + 1 (x – 3) = 0
⇒ (x – 3) (2x + 1) = 0
⇒ x – 3 = 0 କିମ୍ବ। 2x + 1 = 0
⇒ x = 3 କିମ୍ବ। x = \(\frac{-1}{2}\)
∴ ନିର୍ଣ୍ଣେୟ ସମାଧାନ 3 ଓ \(\frac{-1}{2}\)
(vii) x2 + ax = 2a2
ସମାଧାନ:
x2 + ax = 2a2
⇒ x2 + ax – 2a2 = 0
⇒ x2 + 2ax – ax – 2a2 = 0
⇒ x (x + 2a) – a (x + 2a) = 0
⇒ (x + 2a) (x – a) = 0
⇒ x + 2a = 0 କିମ୍ବ। x – a = 0
⇒ x = -2a କିମ୍ବ। x = a
∴ ନିର୍ଣ୍ଣେୟ ସମାଧାନ a ଓ -2a
(viii) x2 + 2ax + a2 – b2 = 0
ସମାଧାନ:
x2 + 2ax + a2 – b2 = 0
⇒ x2 + 2ax + a2 = b2
⇒ (x + a)2 = b2
⇒ x + a = ± √b2
⇒ x + a = ± b
∴ x + a = b କିମ୍ବ। x + a = -b
⇒ x = b – a କିମ୍ବ। x = -(a + b)
∴ ନିର୍ଣ୍ଣେୟ ସମାଧାନ (b – a) ଓ -(a + b)
Question 4.
ସମାଧାନ କର :
(i) \(\frac{3}{x+2}-\frac{1}{x}=\frac{4}{15}\)
ସମାଧାନ:
⇒ \(\frac{3 x-(x+2)}{x(x+2)}=\frac{4}{15}\)
⇒ \(\frac{3 x-x-2}{x^2+2 x}=\frac{4}{15}\)
⇒ 4 (x2 + 2x) = 15 (2x – 2)
⇒ 4x2 + 8x = 30x – 30
⇒ 4x2 + 8x – 30x + 30 = 0
⇒ 4x2 – 22x + 30 = 0
⇒ 4x2 – 12x – 10x + 30 = 0
⇒ 4x (x – 3) – 10 (x – 3) = 0
⇒ (x – 3) (4x – 10) = 0
⇒ x – 3 = 0 କିମ୍ବ। 4x – 10 = 0
⇒ x = 3 କିମ୍ବ। x = \(\frac{10}{4}=\frac{5}{2}\)
∴ ନିର୍ଣ୍ଣେୟ ସମାଧାନ 3 ଓ \(\frac{5}{2}\)
(ii) \(\frac{5}{3 x-2}+\frac{3}{x+2}\) = 1
ସମାଧାନ:
⇒ \(\frac{5(x+2)+3(3 x-2)}{(3 x-2)(x+2)}\) = 1
⇒ 5x + 10 + 9x – 6 = (3x – 2) (x + 2)
⇒ 14x + 4 = 3x2 + 6x – 2x – 4
⇒ 3x2 + 4x – 4 = 14x + 4
⇒ 3x2 + 4x – 14x – 4 – 4 = 0
⇒ 3x2 – 10x – 8 = 0
⇒ 3x2 – 12x + 2x – 8 = 0
⇒ 3x (x – 4) + 2 (x – 4) = 0
⇒ (x – 4) (3x + 2) = 0
⇒ x – 4 = 0 ବା 3x + 2 = 0
⇒ x = 4 ବା x = \(-\frac{2}{3}\)
∴ ନିର୍ଣ୍ଣେୟ ସମାଧାନ 4 ଓ \(-\frac{2}{3}\)
(iii) \(\frac{x+1}{x+3}-\frac{1-x}{3+2 x}\) = 2
ସମାଧାନ:
⇒ \(\frac{(x+1)(2 x+3)-(x+3)(1-x)}{(x+3)(2 x+3)}\) = 2
⇒ \(\frac{\left(2 x^2+3 x+2 x+3\right)-\left(x-x^2+3-3 x\right)}{2 x^2+6 x+3 x+9}\)
⇒ (2x2 + 5x + 3) – (- x2 – 2x + 3) = 2 (2x2 + 9x + 9)
⇒ 2x2 + 5x + 3 + x2 + 2x- 3 = 4x2 + 18x + 18
⇒ 3x2 + 7x – 4x2 – 18x – 18 = 0
⇒ -x2 – 11x – 18 = 0
⇒ x2 + 11x + 18 = 0
⇒ x2 + 9x + 2x + 18 = 0
⇒ x (x + 9) + 2 (x + 9) = 0
⇒ (x + 9) (x + 2) = 0
⇒ x + 9 = 0 ବା x + 2 = 0
⇒ x = -9 ବା x = -2
∴ ନିର୍ଣ୍ଣେୟ ସମାଧାନ -9 ଓ -2
(iv) \(\frac{x}{x+1}+\frac{x+1}{x}=\frac{5}{2}\)
ସମାଧାନ:
⇒ \(\frac{x^2+(x+1)^2}{x(x+1)}=\frac{5}{2}\)
⇒ \(\frac{x^2+x^2+2 x+1}{x^2+x}=\frac{5}{2} \Rightarrow \frac{2 x^2+2 x+1}{x^2+x}=\frac{5}{2}\)
⇒ 5(x2 + x) = 2 (2x2 + 2x + 1)
⇒ 5x2 + 5x = 4x2 + 4x + 2
⇒ 5x2 – 4x2 + 5x – 4x – 2 = 0
⇒ x2 + x – 2 = 0
⇒ x2 + 2x – x – 2 = 0
⇒ x (x + 2) – 1 (x + 2) = 0
⇒ (x – 1) (x + 2) = 0
⇒ x – 1 = 0 ବା x + 2 = 0
⇒ x = 1 ବା x = -2
∴ ନିର୍ଣ୍ଣେୟ ସମାଧାନ 1 ଓ -2
Question 5.
(i) x2 – 7x + a = 0 ସମୀକରଣର ଗୋଟିଏ ବୀଜ 3 ହେଲେ, aର ମାନ ନିର୍ଣ୍ଣୟ କର ଓ ସମୀକରଣର ଅନ୍ୟ ବୀଜଟି ନିର୍ଣ୍ଣୟ କର ।
ସମାଧାନ:
x2 – 7x + a = 0 ସମୀକରଣର ଗୋଟିଏ ବୀଜ 3।
⇒ (3)2 – 7(3) + a = 0 ⇒ 9 – 21 + a = 0
⇒ a – 12 = 0⇒ a = 12
a = 12 ହେଲେ ସମୀକରଣଟି x2 – 7x + 12 = 0
⇒ x2 – 4x – 3x + 12 = 0
⇒ x (x – 4) – 3(x – 4) = 0 ⇒ (x – 3) (x – 4) = 0
⇒ x – 3 = 0 କିମ୍ବା x – 4 = 0 ⇒ x = 3 କିମ୍ବା x = 4
∴ ସମୀକରଣଟିର ଅନ୍ୟ ବୀଜ 4 । ∵ ପୂର୍ବରୁ ଗୋଟିଏ ବୀଜ 3 ଦତ୍ତ ଅଛି ।
∴ a ର ମାନ 12 ଏବଂ ସମୀକରଣର ଅନ୍ୟ ବୀଜଟି 4 ।
(ii) x2 + ax – 15 = 0) ସମୀକରଣର ଗୋଟିଏ ବୀଜ 5 ହେଲେ, ଥର ମାନ ନିର୍ଣ୍ଣୟ କର ଓ ସମୀକରଣର ଅନ୍ୟ ବୀଜଟି ନିର୍ଣ୍ଣୟ କର ।
ସମାଧାନ:
x2 + ax – 15 = 0 ସମୀକରଣର ଗୋଟିଏ ବୀଜ 5 ।
⇒ (5)2 + a(5) – 15 = 0 ⇒ 25 + 5a – 15 = 0
⇒ 10 + 5a = 0 ⇒ 10 = -5a ⇒ a = \(\frac{10}{-5}\) = -2
aର ମାନ – 2 ହେଲେ ସମୀକରଣଟି x2 – 2x – 15 = 0 ⇒ x2 – 5x + 3x – 15 = 0
⇒ x (x – 5) + 3 (x – 5) = 0 ⇒ (x – 5) (x + 3) = 0
⇒ x – 5 = 0 ବା x + 3 = 0 ⇒ x = 5 ବା x = -3
∴ ସମୀକରଣର ଅନ୍ୟ ବୀଜଟି -3 ∵ ଗୋଟିଏ ବୀଜ 5 ଦତ୍ତ ଅଛି ।
∴ aର ମାନ – 2 ଓ ସମୀକରଣର ଅନ୍ୟ ବୀଜଟି – 3 ।