CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(f)

Odisha State Board Elements of Mathematics Class 11 Solutions CHSE Odisha Chapter 14 Limit and Differentiation Ex 14(f) Textbook Exercise Questions and Answers.

CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Exercise 14(f)

Differentiate.

Question 1.
x8 + x7
Solution:
Let  y = x8 + x7
Then \(\frac{d y}{d x}\) = 8x7 + 7x6

Question 2.
x5/3 – x1/2
Solution:
Let y = x5/3 – x1/2
\(\frac{d y}{d x}=\frac{5}{3} x^{\frac{2}{3}}-\frac{1}{2} x^{-\frac{1}{2}}\)

Question 3.
x3 – 5x
Solution:
Let y = x3 – 5x
Then \(\frac{d y}{d x}\) = 3x2 – 5

Question 4.
√x + \(\frac{1}{\sqrt{x}}-\sqrt[3]{x^2}\)
Solution:
Let y = √x + \(\frac{1}{\sqrt{x}}-\sqrt[3]{x^2}\)
= \(x^{\frac{1}{2}}+x^{-\frac{1}{2}}-x^{\frac{2}{3}}\)
⇒ \(\frac{d y}{d x}=\frac{1}{2} x^{\frac{-1}{2}}-\frac{1}{2} x^{\frac{-3}{2}}-\frac{2}{3} x^{\frac{-1}{3}}\)

Question 5.
x2 + 2x – sin x + 5
Solution:
x2 + 2x – sin x + 5
\(\frac{d y}{d x}\) = 2x + 2 – cos x

CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(f)

Question 6.
\(\frac{1}{2} x^{\frac{1}{2}}+\frac{1}{3} x^{\frac{1}{3}}\)
Solution:
\(\frac{1}{2} x^{\frac{1}{2}}+\frac{1}{3} x^{\frac{1}{3}}\)
\(\frac{d y}{d x}=\frac{1}{4} x^{\frac{-1}{2}}+\frac{1}{9} x^{\frac{-2}{3}}\)

Question 7.
ax2 + b tan x + ln x3
Solution:
ax2 + b tan x + ln x3
\(\frac{d y}{d x}\) = 2ax + b sec2 x + \(\frac{3}{x}\)

Question 8.
√x(√x + 1)
Solution:
Let y = √x(√x + 1) = \(x+x^{\frac{1}{2}}\)
\(\frac{d y}{d x}=1+\frac{1}{2} x^{\frac{-1}{2}}\)

Question 9.
(x – 1)2
Solution:
Let y = (x – 1)2
Then \(\frac{d y}{d x}\) = 2(x – 1)

Question 10.
(x2 – x + 2)2
Solution:
Let y = (x2 – x + 2)2
\(\frac{d y}{d x}\) = 2(x2 – x + 2) × \(\frac{d}{d x}\)(x2 – x + 2)
= 2(x2 – x + 2)(2x – 1)

Question 11.
x sin x – \(\frac{e^x}{1+x^2}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(f)

Question 12.
tan 2x + sec 2x
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(f) 1

Question 13.
\(\frac{x^2}{x+1}-\frac{x}{1-x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(f) 2

Question 14.
\(\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(f) 3

CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(f)

Question 15.
\(\frac{\tan x-\cos x}{\sin x \cos x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(f) 4

Question 16.
\(\left(\frac{x-1}{x+1}\right)^2\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(f) 5

Question 17.
x3 (1 + x)(2 – x)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(f) 6

Question 18.
x3 (sin x) e4 ln x
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(f) 7

Question 19.
\(\frac{1}{\sqrt{x}}\) + x ln x3
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(f) 8

Question 20.
x2 log2 x + sec x
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(f) 9

Question 21.
\(\frac{x^2-1}{x^3+1}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(f) 10

Question 22.
(x3 + 1)(3x2 + 2x – 7)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(f) 11

Question 23.
cot x – sec x – log10 x
Solution:
\(\frac{d y}{d x}\) = -cosec 2 x – sec x. tan x – \(\frac{1}{x} \log _{10} e\)

CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(f)

Question 24.
\(\frac{1-\cos x}{1+\cos x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(f) 12

Question 25.
\(\frac{1-\tan x}{1+\tan x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(f) 13

Question 26.
\(\frac{\left[x^{\frac{3}{5}}-2 e^2 \ln x+\ln ^{\frac{2}{3}}\right]}{(1+x)}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(f) 14

Question 27.
cosec x + cot x
Solution:
Let y = cosec x + cot x
\(\frac{d y}{d x}\) = -cosec x. cot x – cosec 2 x

Question 28.
tan2 x + sec2 x
Solution:
Let y = tan2 x + sec2 x
\(\frac{d y}{d x}\) = 2 tan x. \(\frac{d}{d x}\)(tan x) + 2 sec x \(\frac{d}{d x}\)(sec x)
= 2 tan x. sec2 x + 2 sec2 x. tan x
= 4 sec2 x tan x

Question 29.
tan2 x + ax
Solution:
tan2 x + ax
\(\frac{d y}{d x}\) = 2 tan x. sec2 x + ax. ln a

Question 30.
sin2 x + x ln x
Solution:
sin2 x – x ln x
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(f) 15

Question 31.
cos2 x + ex cos x
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(f) 16

Question 32.
\(\frac{a^x-b^x}{x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(f) 17

Question 33.
\(\frac{e^x+e^{-x}}{x^2+1}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(f) 18

CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(f)

Question 34.
\(\frac{\ln x}{x^2}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(f) 19

Question 35.
Show that f(x) = \(\left\{\begin{array}{l}
x \sin \frac{1}{x}, x \neq 0 \\
0, x=0
\end{array}\right.\) is not differentiable x = 0
Solution:
Differentiability
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(f) 20

Leave a Comment