Odisha State Board BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(e) Textbook Exercise Questions and Answers.
BSE Odisha Class 8 Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(e)
Question 1.
11 ଠାରୁ 20 ପର୍ଯ୍ୟନ୍ତ ସମସ୍ତ ଗଣନ ସଂଖ୍ୟାର ଘନ ନିର୍ଣ୍ଣୟ କର ।
ସମାଧାନ :
11³ = 11 × 11 × 11 = 1331
12³ = 12 × 12 × 12 = 1728
13³ = 13 × 13 × 13 = 2197
14³ = 14 × ¡4 × 14 = 2744
15³ = 15 × 15 × 15 = 3375
16³ = 16 × 16 × 16 = 4096
17³ = 17 × 17 × 17 = 4913
18³ = 18 × 18 × 18 = 5832
19³ = 19 × 19 × 19 = 6859
20³ = 20 × 20 × 20 = 8000
Question 2.
ଶୂନ୍ୟସ୍ଥାନ ପୂରଣ କର ।
(i) (3)³ × (4)³ = (……..)³
(iii) (12)³ × (5)³ = ( …….)³
(iii) (5)³ × (11)³ = (…….)³
(iv) 6³ = 2³ × (……)³
(v) (15)³ = (…….)³ × (5)³
ସମାଧାନ :
a³b³ = (ab)³
(i) 12
(ii) 55
(iii) 60
(iv) 3
(v) 3
Question 3.
ନିମ୍ନଲିଖତ ସଂଖ୍ୟାଗୁଡ଼ିକ ମଧ୍ୟରୁ କେଉଁଗୁଡ଼ିକ ଘନ ସଂଖ୍ୟା ?
54, 216, 243, 218, 1331, 106480
ସମାଧାନ :
n = m³ ହେଲେ, m, n ∈ N
n ଏକ ଘନସଂଖ୍ୟା ହେବ ।
54 = 3 × 3 × 3 × 2 = (3)³ × 2
ଉତ୍ପାଦକୀକରଣଦ୍ଵାରା ସଂଖ୍ୟାଟି n³ ରୂପେ ପ୍ରକାଶିତ ହେଲା ନାହିଁ; ତେଣୁ 54 ଏକ ଘନସଂଖ୍ୟା ନୁହେଁ ।
216 = 2 × 2 × 2 × 3 × 3 × 3 = (2)³ × (3)³ = (2 × 3)³ = (6)³
ଉତ୍ପାଦକୀକରଣଦ୍ୱାରା 216, n³ ଅର୍ଥାତ୍ (6)³ ଆକାରରେ ପ୍ରକାଶିତ ହେଲା, ତେଣୁ 216 ଏକ ଘନସଂଖ୍ୟା ।
243 = 3 × 3 × 3 × 3 × 3 = (3)³ × 3 × 3
ଉତ୍ପାଦକୀକରଣ ଦ୍ବାରା 243, n³ ଆକାରରେ ପ୍ରକାଶିତ ହେଲା ନାହିଁ । ତେଣୁ 243 ଘନସଂଖ୍ୟା ନୁହେଁ ।
218 = 2 × 109
ଉତ୍ପାଦକୀକରଣ ଦ୍ବାରା ଏହା n³ ଆକାରରେ ପ୍ରକାଶିତ ହେଲା ନାହିଁ । ତେଣୁ 218 ଘନସଂଖ୍ୟା ନୁହେଁ ।
1331 = 11 × 11 × 11 = (11)³
ଉତ୍ପାଦକୀକରଣ ଦ୍ବାରା 1331, n³ ଅର୍ଥାତ୍ (11)³ ଆକାରରେ ପ୍ରକାଶିତ ହେଲା, ତେଣୁ 1331 ଏକ ଘନ ସଂଖ୍ୟା ।
106480 = 2 × 2 × 2 × 2 × 11 × 11 × 11 × 5 = (2)³ × (11)³ × 2 × 5
ଉତ୍ପାଦକୀକରଣ ଦ୍ଵାରା ଏହା n³ ଆକାରରେ ପ୍ରକାଶିତ ହେଲା ନାହିଁ । ତେଣୁ 106480 ଘନସଂଖ୍ୟା ନୁହେଁ ।
Question 4.
675 ରେ ଅଚୂନ କେତେ ଗୁଣିଲେ, ଗୁଣଫଳ ଏକ ଘନସଂଖ୍ୟା ହେବ ?
ସମାଧାନ :
675 = 3 × 3 × 3 × 5 × 5 = (3)³ × (5)²
∴ 675 ର ଉତ୍ପାଦକୀକରଣରେ
ଗୁଣନୀୟକ 3 ର ସଂଖ୍ୟା = 3
ଗୁଣନୀୟକ 5 ର ସଂଖ୍ୟା = 2
∴ 675 କୁ ଅନ୍ୟୁନ 5 ଦ୍ବାରା ଗୁଣିଲେ ଗୁଣଫଳ ଏକ ଘନସଂଖ୍ୟା ହେବ ।
Question 5.
8640 କୁ ଅତିକମ୍ରେ କେଉଁ ସଂଖ୍ୟାଦ୍ଵାରା ଭାଗକଲେ, ଭାଗଫଳ ଏକ ଘନସଂଖ୍ୟା ହେବ ?
ସମାଧାନ :
8640 = 2 × 2 × 2 × 2 × 2 × 2 × 3 × 3 × 3 × 5 = (2)³ × (2)³ × (3)³ × 5
ଉତ୍ପାଦକୀକରଣ ଜଣାପଡ଼ିଲା ଯେ,
5 ବ୍ୟତୀତ ଅନ୍ୟ ମୌଳିକ ଉତ୍ପାଦକମାନ n’ ଆକାରରେ ପ୍ରକାଶିତ ହୋଇଛନ୍ତି ।
∴ ସଂଖ୍ୟାଟିକୁ 5 ଦ୍ଵାରା ଭାଗକଲେ, ଭାଗଫଳ ଏକ ଘନସଂଖ୍ୟା ହେବ ।
Question 6.
ଏକ ସମଘନର ଏକ ଧାରର ଦୈର୍ଘ୍ୟ 15 ସେ.ମି. ହେଲେ, ଏହାର ଆୟତନ କେତେ ?
ସମାଧାନ :
ଏକ ସମଘନର ଏକ ଧାରର ଦୈର୍ଘ୍ୟ = 15 ସେ.ମି.
ଏହାର ଆୟତନ = (ବାହୁର ଦୈର୍ଘ୍ୟ)³ = 15³ ଘନ ସେ.ମି. = 3375 ଘନ ସେ.ମି.
ସମଘନର ଆୟତନ 3375 ଘନ ସେ.ମି. ।
Question 7.
ଗୋଟିଏ ସମଘନାକାର ପାଣିଟାଙ୍କିର ଗଭୀରତା 2 ମିଟର । ଏଥୁରୁ ଦୈନିକ 1000 ଲିଟର ପାଣି କାଢ଼ି ନିଆଗଲେ, କେତେ ଦିନରେ ପାଣିତକ ଶେଷ ହୋଇଯିବ ?
ସମାଧାନ :
ସମଘନାକାର ପାଣିଟାଙ୍କିର ଗଭୀରତା 2 ମିଟର ।
ଏହାର ଘନଫଳ = (ବାହୁର ଦୈର୍ଘ୍ୟ)³ = (2 ମିଟର)³ = 8 ଘନମିଟର
1 ଘନମିଟର ପାଣି = 1000 ଲିଟର ପାଣି । 8 ଘନମିଟର ପାଣି = 8000 ଲିଟର ପାଣି ।
ପାଣିଟାଙ୍କିରେ ଥିବା ପାଣିର ଆୟତନ = 8000 ଲିଟର
ଦୈନିକ 1000 ଲିଟର ଲେଖା କାଢ଼ିନେଲେ ପାଣିତକ ଶେଷ ହେବ 8000 ÷ 1000 = 8 ଦିନରେ ।
Question 8.
12 ମିଟର ଗଭୀର ଏକ ସମଘନାକାର ଗାତ ଖୋଳିବାକୁ ଘନ ମିଟରକୁ 25 ଟଙ୍କା ହିସାବରେ କେତେ ଖର୍ଚ୍ଚ ହେବ ?
ସମାଧାନ :
ସମଘନାକାର ଗାତର ଗଭୀରତା = 12 ମିଟର
ଏହାର ଆୟତନ = (ଗଭୀରତା)³ = (12)³ ଘନମିଟର = 1728 ଘନମିଟର
1 ଘନମିଟର ଗାତଖୋଳିବାରେ ଖର୍ଚ୍ଚ ହୁଏ 25 ଟଙ୍କା ।
1728 ଘନମିଟର ଗାତ ଖୋଳିବାରେ ଖର୍ଚ୍ଚହେବ 1728 × 25 ଟଙ୍କା = 43200 ଟଙ୍କା ।
Question 9.
3 ର ଗୁଣିତକ ଯେ କୌଣସି ପାଞ୍ଚଗୋଟି ଗଣନ ସଂଖ୍ୟାର ଘନ ନିର୍ଣ୍ଣୟ କର ଏବଂ ଦର୍ଶାଅ ଯେ, 3 ର ଗୁଣିତକ ଯେ କୌଣସି ଗଣନ ସଂଖ୍ୟାର ଘନ, 27ର ଏକ ଗୁଣିତକ ଅଟେ ।
ସମାଧାନ :
ମନେକର ସଂଖ୍ୟା ପାଞ୍ଚୋଟି ଯେଉଁମାନେ 3ର ଗୁଣିତକ; ଯଥା – 6, 9, 12, 15, 18 ।
(6)³= (2 × 3)³ = 2³ × 3³ = 8 × 27; ଅର୍ଥାତ୍ (6)³, 27 ର ଗୁଣିତକ ଏବଂ 6³ = 216
(9)³ = (3 × 3³ = 3³ x 3³ = 27 × 27; ଅର୍ଥାତ୍ (9)³, 27 ର ଗୁଣିତକ ଏବଂ 9³ = 729
(12)³ = (4 × 3)³ = 4³ × 3³ = 64 × 27; ଅର୍ଥାତ୍ (12)³, 27 ର ଗୁଣିତକ ଏବଂ 12³ = 1728
(15)³ = (5 × 3)³ = 5³ × 3³ = 125 × 27; ଅର୍ଥାତ୍ (15)³, 27 ର ଗୁଣିତକ ଏବଂ 15³ = 3375
(18)³= (6 × 3)³ = 6³ × 3³ = 216 × 27; ଅର୍ଥାତ୍ (18)³, 27 ର ଗୁଣିତକ ଏବଂ 18³ = 5832
n ∈ N ହେଲେ 3n ଏକ ସଂଖ୍ୟା, ଯାହା 3ର ଗୁଣିତକ ।
(3n)³ = 27n³ ; ଅର୍ଥାତ୍ (3n), 27ର ଗୁଣିତକ ଅଟେ ।
Question 10.
ଦର୍ଶାଅ ଯେ , ଯୁଗ୍ମ ସଂଖ୍ୟାର ଘନ ଏକ ଯୁଗ୍ମ ସଂଖ୍ୟା ଏବଂ ଅଯୁଗ୍ମ ସଂଖ୍ୟାର ଘନ ଏକ ଅଯୁଗ୍ମ ସଂଖ୍ୟା ।
ସମାଧାନ :
n ∈ Z ହେଲେ, 21 ଏକ ଯୁଗ୍ମସଂଖ୍ୟା ଏବଂ (2n + 1) ଏକ ଅଯୁଗ୍ମ ସଂଖ୍ୟା ।
ଯୁଗ୍ମସଂଖ୍ୟା 2n ଘନ = (2n)³ = 8n³ = 2(4n³) [4n³ ∈ Z]
ଅର୍ଥାତ୍ 2nର ଘନ ଏକ ଯୁଗ୍ମସଂଖ୍ୟା ।
ପୁନଶ୍ଚ ଅଯୁଗ୍ମ ସଂଖ୍ୟା (2n + 1 )ର ଘନ = (2n + 1)³ = 8n³ + 12n² + 6n + 1
= 2(4n³ + 6n² + 3n) + 1
ଏଠାରେ 44n³ + 6n² + 3n ∈ Z
(2n + 1)ର ଘନ ଏକ ଅଯୁଗ୍ମ ସଂଖ୍ୟା ।