CHSE Odisha Class 11 Math Solutions Chapter 10 Sequences And Series Ex 10(b)

Odisha State Board Elements of Mathematics Class 11 CHSE Odisha Solutions Chapter 10 Sequences and Series Ex 10(b) Textbook Exercise Questions and Answers.

CHSE Odisha Class 11 Math Solutions Chapter 10 Sequences and Series Exercise 10(b)

Question 1.
Expand in ascending power of x.
(i) 2x
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 10 Sequences And Series Ex 10(b)

(ii) cos x
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 10 Sequences And Series Ex 10(b) 1

(iii) sin x
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 10 Sequences And Series Ex 10(b) 2

(iv) \(\frac{x e^{7 x}-e^{-x}}{e^{3 x}}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 10 Sequences And Series Ex 10(b) 3

(v) \(\boldsymbol{e}^{e^x}\) up to the term containing x4
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 10 Sequences And Series Ex 10(b) 4
CHSE Odisha Class 11 Math Solutions Chapter 10 Sequences And Series Ex 10(b) 5

CHSE Odisha Class 11 Math Solutions Chapter 10 Sequences And Series Ex 10(b)

Question 2.
If x = y + \(\frac{y^2}{2 !}+\frac{y^3}{3 !}\) + ….. then show that y = x – \(\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}\) +….
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 10 Sequences And Series Ex 10(b) 6

Question 3.
Find the value of \(x^2-y^2+\frac{1}{2 !}\left(x^4-y^4\right)+\frac{1}{3 !}\left(x^6-y^6\right)\) + ….
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 10 Sequences And Series Ex 10(b) 7

Question 4.
Show that
(i) 2\(\left(\frac{1}{3 !}+\frac{2}{5 !}+\frac{3}{7 !}+\ldots\right)=\frac{1}{e}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 10 Sequences And Series Ex 10(b) 8

(ii) \(\frac{9}{1 !}+\frac{19}{2 !}+\frac{35}{3 !}+\frac{57}{4 !}+\frac{85}{5 !}\) + …. = 12e – 5
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 10 Sequences And Series Ex 10(b) 9
CHSE Odisha Class 11 Math Solutions Chapter 10 Sequences And Series Ex 10(b) 10

(iii) \(1+\frac{1+3}{2 !}+\frac{1+3+3^2}{3 !}+\ldots=\frac{1}{2}\left(e^3-e\right)\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 10 Sequences And Series Ex 10(b) 11

(iv) \(\frac{1.3}{1 !}+\frac{2.4}{2 !}+\frac{3.5}{3 !}+\frac{4.6}{4 !}\) + …. = 4e
Solution:
tn for L.H.S.
= \(\frac{n(n+2)}{n !}=\frac{n^2+2 n}{n !}\)
CHSE Odisha Class 11 Math Solutions Chapter 10 Sequences And Series Ex 10(b) 12

(v) \(\frac{1}{1.2}+\frac{1.3}{1.2 .3 .4}+\frac{1.3 .5}{1.2 .3 .4 .5 .6}\) + …. = √e – 1
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 10 Sequences And Series Ex 10(b) 13

CHSE Odisha Class 11 Math Solutions Chapter 10 Sequences And Series Ex 10(b)

Question 5.
Prove that
(i) loge(1 + 3x + 2x2) = 3x – \(\frac{5}{2}\)x2 + \(\frac{9}{3}\)x3 – \(\frac{17}{4}\)x4 + …..,|x| < \(\frac{1}{2}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 10 Sequences And Series Ex 10(b) 14

(ii) loge(n + 1) – loge(n – 1) = 2 \(\left[\frac{1}{n}+\frac{1}{3 n^3}+\frac{1}{5 n^5}+\ldots\right]\)
Solution:
There is a printing mistake in the question. The correct question is loge(n + 1) – loge(n – 1)
CHSE Odisha Class 11 Math Solutions Chapter 10 Sequences And Series Ex 10(b) 15
CHSE Odisha Class 11 Math Solutions Chapter 10 Sequences And Series Ex 10(b) 16

(iii) loge(n + 1) – logen = 2 \(\left[\frac{1}{2 n+1}+\frac{1}{3(2 n+1)^3}+\frac{1}{5(2 n+1)^5}+\ldots\right]\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 10 Sequences And Series Ex 10(b) 17

(iv) logem – logen = \(\frac{m-n}{m}+\frac{1}{2}\left(\frac{m-n}{m}\right)^2\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 10 Sequences And Series Ex 10(b) 18
= – [log n – log m]
= log m – log n = L.H.S.

(v) logea – logeb = \(2\left[\frac{a-b}{a+b}+\frac{1}{3}\left(\frac{a-b}{a+b}\right)^3\right.\) \(\left.+\frac{1}{5}\left(\frac{a-b}{a+b}\right)^5+\ldots\right], a>b\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 10 Sequences And Series Ex 10(b) 19

(vi) logen = \(\frac{n-1}{n+1}+\frac{1}{2} \cdot \frac{n^2-1}{(n+1)^2}\)\(+\frac{1}{3} \cdot \frac{n^2-1}{(n+1)^3}\) + …..
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 10 Sequences And Series Ex 10(b) 20

Leave a Comment