BSE Odisha 9th Class Maths Solutions Algebra Chapter 3 ବୀଜଗାଣିତିକ ପରିପ୍ରକାଶ ଓ ଅଭେଦ Ex 3(a)

Odisha State Board BSE Odisha 9th Class Maths Solutions Algebra Chapter 3 ବୀଜଗାଣିତିକ ପରିପ୍ରକାଶ ଓ ଅଭେଦ Ex 3(a) Textbook Exercise Questions and Answers.

BSE Odisha Class 9 Maths Solutions Algebra Chapter 3 ବୀଜଗାଣିତିକ ପରିପ୍ରକାଶ ଓ ଅଭେଦ Ex 3(a)

Question 1.
ନିମ୍ନଲିଖୂତ ମନୋମିଆଲଗୁଡ଼ିକୁ ସାନରୁ ବଡ଼ ଘାତାଙ୍କ କ୍ରମରେ ସଜାଇ ଲେଖ ।
1.4y3, √2y2, -51, 7y8, -8y4, \(\frac{11}{13}\)y9, √3y
ସମାଧାନ:
ମନୋମିଆଲଗୁଡ଼ିକୁ ସାନରୁ ବଡ଼ ଘାତାଙ୍କ କ୍ରମରେ ସଜାଇ ଲେଖିଲେ ହେବ –
-51, √3y, √2y2, 1.4y3, -8y4, 7y8, ଓ \(\frac{11}{13}\)y9 .

Question 2.
ନିମ୍ନରେ ପ୍ରଦତ୍ତ ମନୋମିଆଲ୍‌ଗୁଡ଼ିକ ମଧ୍ୟରୁ ସଦୃଶ ମନୋମିଆଲ୍‌ଗୁଡ଼ିକୁ ବାଛି ପୃଥକ୍ ଭାବେ ଲେଖ ।
12x2, -3x, \(\frac{1}{\sqrt{2}}\) x3, -5x2, \(\frac{x}{7}\), 15, √3x3, 10x4, \(\frac{8}{11}\)
ସମାଧାନ:
(12x2, -5x2), (-3x, \(\frac{x}{7}\)), (\(\frac{1}{\sqrt{2}}\) x3, √3x3), (15, \(\frac{8}{11}\))
ସଦୃଶ ମନୋମିଆଲ୍‌ଗୁଡ଼ିକୁ ବନ୍ଧନୀ ମଧ୍ଯରେ ରଖାଯାଇଛି ।

Question 3.
ନିମ୍ନସ୍ଥ ପ୍ରତ୍ୟେକ ପ୍ରକାର ପଲିନୋମିଆଲ୍‌ରୁ ଦୁଇଟି ଲେଖାଏଁ ଉଦାହରଣ ଦିଅ ।

(i) ଣୂନଘାତା ପଲିନୋମିଆଲ୍
ସମାଧାନ:
2, –\(\frac{1}{4}\)

(ii) ଏକପଦ ବିଶିଷ୍ଟ ଦ୍ୱିଘାତୀ ପଲିନୋମିଆଲ୍
ସମାଧାନ:
5x2, -3x2

(iii) ଦୁଇପଦ ବିଶିଷ୍ଟ ତ୍ରିଘାତୀ ପଲିନୋମିଆଲ୍
ସମାଧାନ:
2x3 – 3x2, \(\frac{4}{5}\) x3 + 5x

(iv) ତିନିପଦ ବିଶିଷ୍ଟ ଦ୍ୱିଘାତୀ ପଲିନୋମିଆଲ୍
ସମାଧାନ:
x2 – 3x + 2, 3x2 – 4x – 5
(ଦତ୍ତ ଉଦାହରଣ ବ୍ୟତୀତ ଅନ୍ୟ ଉଦାହରଣ ଦିଆଯାଇପାରେ ।)

BSE Odisha 9th Class Maths Solutions Algebra Chapter 3 ବୀଜଗାଣିତିକ ପରିପ୍ରକାଶ ଓ ଅଭେଦ Ex 3(a)

Question 4.
ଯାେଗ କର

(i) 2y3 – 3y – 4, 2 – y3 + 5y
ସମାଧାନ:
(2y3 – 3y –  4) + (2 – y3 + 5y)
= (2y2 – 3y –  4) + (-y3 + 5y + 2) (ପ୍ରତ୍ୟେକ ପଲିନୋମିଆଲ୍‌କୁ ଘାତାଙ୍କ କ୍ରମରେ ସଜାଇବା)
= (2y3 –  y3) + (-3y + 5y) + (- 4 + 2) (ସଦୃଶ ପଦଗୁଡ଼ିକୁ ଏକାଠି କରି)
= y3 + 2y – 2
∴ ନିର୍ଣ୍ଣେୟ ଯୋଗଫଳ = y3 + 2y – 2

(ii) 3x4 – 2x3 – 5 + x – 5x2, 3x3 + 2x2 – x4 – x + 1
ସମାଧାନ:
(3x4 – 2x3 – 5 + x – 5x2) + (3x3 + 2x2 – x4 – x + 1)
= (3x4 – 2x3 – 5x2 + x – 5) + (-x4 + 3x3 + 2x2 – x + 1) (ଘାତାଙ୍କ କ୍ରମରେ ସଜାଇ)
= (3x4 – x4) + (-2x3 + 3x3) + (-5x2 + 2x2) + (x – x) + (-5 + 1) (ସଦୃଶ ପଦଗୁଡ଼ିକୁ ଏକାଠି କରି)
= 2x4 + x3 – 3x2 + 0 – 4 = 2x4 + x3 – 3x2 – 4
∴ ନିର୍ଣ୍ଣେୟ ଯୋଗଫଳ = 2x4 + x3 – 3x2 – 4

(iii) \(\frac{3}{4}\) x2 – \(\frac{4}{5}\) x – 3, \(\frac{1}{4}\) x2 + \(\frac{4}{5}\) x + 2
ସମାଧାନ:
\(\left(\frac{3}{4} x^2-\frac{4}{5} x-3\right)+\left(\frac{1}{4} x^2+\frac{4}{5} x+2\right)\)
= \(\left(\frac{3}{4} x^2+\frac{1}{4} x^2\right)+\left(-\frac{4}{5} x+\frac{4}{5} x\right)\) + (-3 + 2) (ସଦୃଶ ପଦଗୁଡ଼ିକୁ ଏକାଠି କରି)
= \(\frac{4}{4}\) x2 + 0.x – 1 = x2 – 1
∴ ନିର୍ଣ୍ଣେୟ ଯୋଗଫଳ = x2 – 1

(iv) 2.1x3 + 3.2x2 + 5 – 3x, 1.9x3 – 1.2x2 + 2x – 1
ସମାଧାନ:
(2.1x3 + 3.2x2 + 5 – 3x) + (1.9x3 – 1.2x2 + 2x – 1)
= (2.1x3 + 3.2x2 – 3x + 5) + (1.9x3 – 1.2x2 + 2x – 1)
= (2.1x3 + 1.9x3) + (3.2x2 – 1.2x2) + (-3x + 2x) + (5 – 1)
= 4x3 + 2x2 – x + 4
∴ ନିର୍ଣ୍ଣେୟ ଯୋଗଫଳ = 4x3 + 2x2 – x + 4

(v) \(\frac{1}{2}\)z3 – \(\frac{3}{2}\) z2 + 6z, \(\frac{1}{2}\) z2 – \(\frac{1}{2}\) z3 – 3z – 1, z3 + 2z2 + 3z – 4
ସମାଧାନ:
BSE Odisha 9th Class Maths Solutions Algebra Chapter 3 ବୀଜଗାଣିତିକ ପରିପ୍ରକାଶ ଓ ଅଭେଦ Ex 3(a)

(vi) 8x – 3xy + 2xyz, 2xy – 5x + 3xyz, xy – 3x + 4xyz
ସମାଧାନ:
(8x – 3xy + 2xyz) + (2xy – 5x + 3xyz) + (xy – 3x + 4xyz)
= (2xyz – 3xy + 8x) + (3xyz + 2xy – 5x) + (4xyz + xy – 3x)
= (2xyz + 3xyz + 4xyz) + (- 3xy + 2xy + xy) + (8x- 5x – 3x)
= 9xyz + 0 + 0 = 9xyz
∴ ନିର୍ଣ୍ଣେୟ ଯୋଗଫଳ = 9xyz

(vii) 5x2 – 2xy + y2, 4xy – 2y2 – 3x2, 4y2 – xy – x2
ସମାଧାନ:
(5x2 – 2xy + y2) + (4xy – 2y2 – 3x2) + (4y2 – xy + x2)
= (5x2 – 2xy + y2) + (-3x2 + 4xy – 2y2) + (-x2 – xy + 4y2)
= (5x2 – 3x2 – x2) + (-2xy + 4xy – xy) + (y2 – 2y2 + 4y2)
= x2 + xy + 3y2
∴ ନିର୍ଣ୍ଣେୟ ଯୋଗଫଳ = x2 + xy + 3y2

Question 5.
ବିୟୋଗ କର :

(i) 6x3 – 13x2 + 14 ରୁ -x3 + 2x – 7x2 + 11
ସମାଧାନ:
(6x3 – 13x2 + 14) – (-x3 + 2x – 7x2 + 11)
= (6x3 – 13x2 + 14) – (-x3 – 7x2 + 2x + 11) (ଘାତାଙ୍କ କ୍ରମରେ ଲେଖିଲେ)
= (6x3 – 13x2 + 14) + {- (-x3 – 7x2 + 2x + 11)} [ a – b = a + (- b)]
= (6x3 – 13x2 + 14) + (x3 + 7x2 – 2x – 11)
= 6x3 + x3 – 13x2 + 7x2 – 2x + 14 – 11 (ସଦୃଶ ପଦଗୁଡ଼ିକୁ ଏକାଠି କରି ସଜାଇ ଲେଖିଲେ)
= 7x3 – 6x2 – 2x + 3
∴ ନିର୍ଣ୍ଣେୟ ଯୋଗଫଳ = 7x3 – 6x2 – 2x + 3
BSE Odisha 9th Class Maths Solutions Algebra Chapter 3 ବୀଜଗାଣିତିକ ପରିପ୍ରକାଶ ଓ ଅଭେଦ Ex 3(a) 1

(ii) t4 – 11 + 2t2 – t3 ରୁ 2t3 – 8t2 – 10
ସମାଧାନ:
(t4 – 11 + 2t2 – t3) – (2t3 – 8t2 – 10)
= (t4 – t3 + 2t2 – 11) – (2t3 – 8t2 – 10)
= (t4 – t3 + 2t2 – 11) + {-(2t3 – 8t2 – 10)}
= (t4 – t3 + 2t2 – 11) + (-2t3 + 8t2 + 10)
= t4 – t3 – 2t3 + 2t2 + 8t2 – 11 + 10 = t4 – 3t3 + 10t2 – 1
∴ ନିର୍ଣ୍ଣେୟ ଯୋଗଫଳ = t4 – 3t3 + 10t2 – 1

(iii) \(\frac{12}{13}\) y2 – \(\frac{5}{13}\) y3 – 15 ରୁ – \(\frac{1}{13}\) y2 + \(\frac{8}{13}\) y3 + 20
ସମାଧାନ:
BSE Odisha 9th Class Maths Solutions Algebra Chapter 3 ବୀଜଗାଣିତିକ ପରିପ୍ରକାଶ ଓ ଅଭେଦ Ex 3(a) 2

(iv) 2.5x3 – 7 – 3.5x2 ରୁ 2.5x2 + 1.5x3 + 8 – 2x
ସମାଧାନ:
(2.5x3 – 7 – 3.5x2) – (2.5x2 + 1.5x3 + 8 – 2x)
= (2.5x3 – 3.5x2 – 7) – (1.5x3 + 2.5x2 – 2x + 8)
= (2.5x3 – 3.5x2 – 7) + {-(1.5x3 + 2.5x2 – 2x + 8)}
= (2.5x3 – 3.5x2 – 7) + (-1.5x3 – 2.5x2 + 2x – 8)
= 2.5x3 – 1.5x3 – 3.5x2 – 2.5x2 + 2x – 7 – 8
= x3 – 6x2 + 2x – 15
∴ ନିର୍ଣ୍ଣେୟ ଯୋଗଫଳ = x3 – 6x2 + 2x – 15

(v) x2 – 2xy + 3y2 ରୁ 2x2 – xy – 2y2
ସମାଧାନ:
(x2 – 2xy + 3y2) – (2x2 – xy – 2y2)
= (x2 – 2xy + 3y2) + {-(2x2 – xy – 2y2)}
= (x2 – 2xy + 3y2) + (-2x2 + xy + 2y2)
= x2 – 2x2 – 2xy + xy + 3y2 + 2y2 = -x2 – xy + 5y2
∴ ନିର୍ଣ୍ଣେୟ ଯୋଗଫଳ = -x2 – xy + 5y2

(vi) 2x2 – 3xy – 4xy2 ରୁ x2 – xy – 2xy2
ସମାଧାନ:
(2x2 – 3xy- 4xy2) – (x2 – xy – 2xy2)
= (2x2 – 3xy – 4xy2) + {-(x2 – xy – 2xy2)}
= (2x2 – 3xy – 4xy2) + (-x2 + xy + 2xy2)
= 2x2 – x2 – 3xy + xy – 4xy2 + 2xy2 = x2 – 2xy – 2xy2
∴ ନିର୍ଣ୍ଣେୟ ଯୋଗଫଳ = x2 – 2xy – 2xy2

(vii) a – 3b + 2c ରୁ 3b – 7c + 2a
ସମାଧାନ:
(a – 3b + 2c) – (3b – 7c + 2a) = (a – 3b + 2c) – (2a + 3b – 7c)
= (a – 3b + 2c) + {-(2a + 3b – 7c)} = (a – 3b + 2c) + (-2a – 3b + 7c)
= a – 2a – 3b – 3b + 2c + 7c = -a – 6b + 9c
∴ ନିର୍ଣ୍ଣେୟ ଯୋଗଫଳ = -a – 6b + 9c

(viii) \(\frac{1}{2}\) a + \(\frac{2}{3}\) b – \(\frac{3}{2}\) c ରୁ a – \(\frac{1}{3}\) b + \(\frac{1}{2}\) c
ସମାଧାନ:
BSE Odisha 9th Class Maths Solutions Algebra Chapter 3 ବୀଜଗାଣିତିକ ପରିପ୍ରକାଶ ଓ ଅଭେଦ Ex 3(a) 3

Question 6.
ନିମ୍ନରେ ଦତ୍ତ ପଲିନୋମିଆଲ୍‌ଗୁଡ଼ିକର ଗୁଣଫଳ ସ୍ଥିର କରି ଗୁଣଫଳର ଘାତ ନିରୂପଣ କର ।

(i) 2x2 – 3x + 5 ଓ x2 + 8x + 2
ସମାଧାନ:
(2x2 – 3x + 5)(x2 + 5x + 2)
= 2x2(x2 + 5x + 2) -3x(x2 + 5x + 2) + 5(x2 + 5x + 2) ( ବଣ୍ଠନ ନିୟମ)
= 2x4 + 10x3 + 4x2 – 3x3 – 15x2 – 6x + 5x2 + 25x + 10 (ପୁନଃବଣ୍ଟନ ନିୟମ)
= 2x4 + (10x3 – 3x3) + (4x2 – 15x2 + 5x2) + (-6x + 25x) + 10 (ସଦୃଶ ପଦଗୁଡ଼ିକୁ ଏକାଠି ରଖୁ)
= 2x4 + 7x3 – 6x2 + 19x + 10
ଗୁଣଫଳର ଘାତ = 4 ।
∴ ଯଦି p(x) ଓ q(x) ଦୁଇଟି ପଲିନୋମିଆଲ୍ ହୁଏ, ତେବେ {p(x) × g(x)} ର ଘାତ = p(x)ର ଘାତ + q(x)ର ଘାତ ।
BSE Odisha 9th Class Maths Solutions Algebra Chapter 3 ବୀଜଗାଣିତିକ ପରିପ୍ରକାଶ ଓ ଅଭେଦ Ex 3(a) 4

(ii) y3 – 5y2 + 11y ଓ y5 – 20y4 + 17
ସମାଧାନ:
(y3 – 5y2 + 11y)(y5 – 20y4 + 17)
= y3(y5 – 20y4 + 17) – 5y2(y5 – 20y4 + 17) + 11y(y5 – 20y4 + 17)
=y8 – 20y7 + 17y3 – 5y7 + 100y6 – 85y2 + 11y6 – 220y5 + 187y
=y8 + (-20y7 – 5y7) + (100y6 + 11y6) – 220y5 + 17y3 – 85y2 + 187y
= y8 – 25y7 + 111y6 – 220y5 + 17y3 – 85y2 + 187y
ଗୁଣଫଳର ଘାତ = 8 ।

(iii) (2x + 3) ଓ 5x2 – 7x + 8
ସମାଧାନ:
(2x + 3)(5x2 – 7x + 8)
= 2x(5x2 – 7x + 8) + 3(5x2 – 7x + 8) = 10x3 – 14x2 + 16x + 15x2 – 21x + 24
= 10x3 + (-14x2 + 15x2) + (16x – 21x) + 24 = 10x3 + x2 – 5x + 24
ଗୁଣଫଳର ଘାତ = 3 ।

BSE Odisha 9th Class Maths Solutions Algebra Chapter 3 ବୀଜଗାଣିତିକ ପରିପ୍ରକାଶ ଓ ଅଭେଦ Ex 3(a)

(iv) (x – 1), (7x – 9) ଓ 3x3 – 14x2 + 8
ସମାଧାନ:
(x – 1)(7x – 9)(3x3 – 14x2 + 8)
= {(x – 1)(7x – 9)} (3x3 – 14x2 + 8) = {x(7x – 9) – 1(7x – 9)} (3x3 – 14x2 + 8)
= (7x2 – 9x – 7x + 9)(3x3 – 14x2 + 8) = (7x2 – 16x + 9)(3x3 – 14x2 + 8)
= 7x2 (3x3 – 14x2 + 8) – 16x(3x3 – 14x2 + 8) + 9(3x3 – 14x2 + 8)
= 21x5 – 98x4 + 56x2 – 48x4 + 224x3 – 128x + 27x3 – 126x2 + 72
= 21x5 + (- 98x4 – 48x4) + (224x3 + 27x3) + (56x2 – 126x2) – 128x + 72
= 21x5 – 146x4 + 251x3 – 70x2 – 128x + 72
ଗୁଣଫଳର ଘାତ = 5 ।

(v) (x2 + y2) ଓ (x4 – x2y2 + y4)
ସମାଧାନ:
(x2 + y2)(x4 – x2y2 + y4)
= x2 (x4 – x2y2 + y4) + y2 (x4 – x2y2 + y4) = x6 – x4y2 + x7y4 + x4y2 – x2y4 + y6
= x6 + (-xy + x4y2) + (x2y4 – x2y4) + y6 = x6 + 0 + 0 + y6 = x6 + y6
ଗୁଣଫଳର ଘାତ = 6 ।

(vi) (2x + 3y), (2x – 3y) ଓ (4x2 + 9y2)
ସମାଧାନ:
(2x + 3y)(2x – 3y)(4x2 + 9y2) = {(2x + 3y)(2x – 3y)} (4x2 + 9y2)
= {2x(2x – 3y) + 3y(2x – 3y)} (4x2 + 9y2)
= (4x2 – 6xy + 6xy – 9y2)(4x2 + 9y2) = (4x2 – 9y2)(4x2 + 9y2)
= 4x2 (4x2 + 9y2) – 9y2 (4x2 + 9y2) = 16x4 + 36x2y2 – 36x2y2 – 81y4
= 16x4 + 0 – 81y4 = 16x4 – 81y4
ଗୁଣଫଳର ଘାତ = 4 ।

Question 7.
ଭାଗଫଳ ଓ ଭାଗଶେଷ ନିରୂପଣ କର ।

(i) (x3 – 1) + (x – 1)
ସମାଧାନ:
BSE Odisha 9th Class Maths Solutions Algebra Chapter 3 ବୀଜଗାଣିତିକ ପରିପ୍ରକାଶ ଓ ଅଭେଦ Ex 3(a) 5

(ii) (-81y2 + 64) + (8 – 9y)
ସମାଧାନ:
BSE Odisha 9th Class Maths Solutions Algebra Chapter 3 ବୀଜଗାଣିତିକ ପରିପ୍ରକାଶ ଓ ଅଭେଦ Ex 3(a) 6

(iii) (2x3 – 7x2 – x + 2) + (x2 – 3x – 2)
ସମାଧାନ:
BSE Odisha 9th Class Maths Solutions Algebra Chapter 3 ବୀଜଗାଣିତିକ ପରିପ୍ରକାଶ ଓ ଅଭେଦ Ex 3(a) 7

(iv) (x3 – 14x2 + 37x – 26) + (x – 2)
ସମାଧାନ:
BSE Odisha 9th Class Maths Solutions Algebra Chapter 3 ବୀଜଗାଣିତିକ ପରିପ୍ରକାଶ ଓ ଅଭେଦ Ex 3(a) 8

(v) (t3 – 6t2 + 11t – 6) + (t2 – 5t + 6)
ସମାଧାନ:
BSE Odisha 9th Class Maths Solutions Algebra Chapter 3 ବୀଜଗାଣିତିକ ପରିପ୍ରକାଶ ଓ ଅଭେଦ Ex 3(a) 9

(vi) (8a2 – 34ab + 21b2) + (4a + 3b)
ସମାଧାନ:
BSE Odisha 9th Class Maths Solutions Algebra Chapter 3 ବୀଜଗାଣିତିକ ପରିପ୍ରକାଶ ଓ ଅଭେଦ Ex 3(a) 10

(vii) (16xy2 – 21x2y + 9X3 – 4y3) + (x – y)
ସମାଧାନ:
BSE Odisha 9th Class Maths Solutions Algebra Chapter 3 ବୀଜଗାଣିତିକ ପରିପ୍ରକାଶ ଓ ଅଭେଦ Ex 3(a) 11

(viii) (x4 + x2y2 + y4) + (x2 – xy + y2)
ସମାଧାନ:
BSE Odisha 9th Class Maths Solutions Algebra Chapter 3 ବୀଜଗାଣିତିକ ପରିପ୍ରକାଶ ଓ ଅଭେଦ Ex 3(a) 12

ଭାଜ୍ୟ = ଭାଜକ x ଭାଗଫଳ + ଭାଗଶେଷ Euclidian Algorithmର ପ୍ରୟୋଗରେ ଭାରକ୍ରିୟାର ସତ୍ୟତା ନିରୂପଣ କରାଯାଇଥାଏ ।

BSE Odisha 9th Class Maths Solutions Algebra Chapter 3 ବୀଜଗାଣିତିକ ପରିପ୍ରକାଶ ଓ ଅଭେଦ Ex 3(a)

Question 8.
ଯଦି p(x) = 3x3 – 6x2 + 2 ଏବଂ q(x) = 2x2 – 5x + 1 ତେବେ

(i) 2p(x) – 5q(x)
ସମାଧାନ:
ଯଦି p(x) = 3x3 – 6x2 + 2 ଏବଂ q(x) = 2x2 – 5x + 1
2p(x) – 5q(x) = 2(3x3 – 6x2 + 2) – 5(2x2 – 5x + 1)
= 6x3 – 12x2 + 4 – 10x2 + 25x – 5
= 6x3 – 12x2 – 10x2 + 25x + 4 – 5 = 6x3 – 22x2 + 25x – 1

(ii) 4p(x) + 3q(x) ବମାନ ସ୍ଥିର କରା
ସମାଧାନ:
ଯଦି p(x) = 3x3 – 6x2 + 2 ଏବଂ q(x) = 2x2 – 5x + 1
4p(x) + 3q(x) = 4(3x3 – 6x2 + 2) + 3(2x2 – 5x + 1)
= 12x3 – 24x2 + 8 + 6x2 – 15x + 3
= 12x3 – 24x2 + 6x2 – 15x + 8 + 3 = 12x3 – 18x2 – 15x + 11

Question 9.
ଯଦି p(x) = 2x3 + 3x + 5 ଏବଂ q(x) = x2 + 4x + 1 ଓ r(x) = x – 1 ହୁଏ ତେବେ ଦର୍ଣ।ଅ ଯେ,

(i) p(x) × q(x) = q(x) × p(x)
ସମାଧାନ:
ଯଦି p(x) = 2x3 + 3x + 5 ଏବଂ q(x) = x2 + 4x + 1 ଓ r(x) = x – 1
ବାମପାର୍ଶ୍ଵ = p(x) × q(x) = (2x3 + 3x + 5)(x2 + 4x + 1)
= 2x3 (x2 + 4x + 1) + 3x(x2 + 4x + 1) + 5(x2 + 4x + 1)
= 2x5 + 8x4 + 2x3 + 3x3 + 12x2 + 3x + 5x2 + 20x + 5
= 2x5 + 8x4 + 5x3 + 12x2 + 5x2 + 3x + 20x + 5
= 2x5 + 8x4 + 5x3 + 17x2 + 23x + 5
ଦକ୍ଷିଣ ପାର୍ଶ୍ଵ = q(x) × p(x) = (x2 + 4x + 1)(2x3 + 3x + 5)
= x2 (2x3 + 3x + 5) + 4x (2x3 + 3x + 5) + 1(2x3 + 3x + 5)
= 2x5 + 3x3 + 5x2 + 8x4 + 12x2 + 20x + 2x3 + 3x + 5
= 2x5 + 8x4 + 3x3 + 2x3 + 5x2 + 12x2 + 20x + 3x + 5
= 2x5 + 8x4 + 5x3 + 17x2 + 23x + 5 (ପଲିନୋମିଆଲ୍ ଦ୍ଵୟର ଗୁଣନ କ୍ରମବିନିମୟୀ ।)
ବାମପାର୍ଶ୍ଵ = ଦକ୍ଷିଣ ପାର୍ଶ୍ଵ (ପ୍ରମାଣିତ)

(ii) p(x) × {(q(x) + r(x)} = p(x) . q(x) + p(x) . r(x)
ସମାଧାନ:
ବାମପାର୍ଶ୍ଵ = P(x) × {q(x) + r(x)}
= (2x3 + 3x + 5) x {(x2 + 4x + 1) + (x – 1)} = (2x3 + 3x + 5) + (x2 + 4x + 1 + x – 1)
= (2x3 + 3x + 5)(x2 + 5x) = 2x3 (x2 + 5x) + 3x(x2 + 5x) + 5(x2 + 5x)
= 2x5 + 10x4 + 3x3 + 15x2 + 5x2 + 25x = 2x5 + 10x4 + 3x3 + 20x2 + 25x
ଦକ୍ଷିଣ ପାର୍ଶ୍ଵ = P(x) . q(x) + p(x) . r(x)
= (2x3 + 3x + 5)(x2 + 4x + 1) + (2x3 + 3x + 5)(x – 1)
= 2x3 (x2 + 4x + 1) + 3x(x2 + 4x + 1) + 5(x2 + 4x + 1)+ 2x3 (x – 1) + 3x(x – 1) + 5(x – 1)
= 2x5 + 8x4 + 2x3 + 3x3 + 12x2 + 3x + 5x2 + 20x + 5 + 2x4 – 2x3 + 3x2 – 3x + 5x – 5
= 2x5 + 8x4 + 2x4 + 2x3 + 3x3 – 2x3 + 12x2 + 5x2 + 3x2 + 3x + 20x – 3x + 5x + 5 – 5
= 2x5 + 10x4 + 3x3 + 20x2 + 25x
ବାମପାର୍ଶ୍ଵ = ଦକ୍ଷିଣ ପାର୍ଶ୍ଵ (ପ୍ରମାଣିତ)
(ପଲିନୋମିଆଲ୍ ଦ୍ଵୟର ଗୁଣନ କ୍ରମବିନିମୟୀ ।)

Question 10.
ସରଳ କର :

(i) (x2 – 3x + 5) + (2x2 – x – 2) – (3x2 + 7x – 3)
ସମାଧାନ:
(x2 – 3x + 5) + (2x2 – x – 2) – (3x2 + 7x – 3)
= x2 – 3x + 5 + 2x2 – x – 2 – 3x2 – 7x + 3
= x2 + 2x2 – 3x2 – 3x – x – 7x + 5 – 2 + 3
= 0 – 11x + 6 = -11x + 6

(ii) (x2 – xy + 2y2) – (2x2 + 4xy + 3y2) + (4x2 – 2xy – y2)
ସମାଧାନ:
(x2 – xy + 2y2) – (2x2 + 4xy + 3y2) + (4x2 – 2xy – y2)
= x2 – xy + 2y2 – 2x2 – 4xy – 3y2 + 4x2 – 2xy – y2
= x2 – 2x2 + 4x2 – xy – 4xy – 2xy + 2y2 – 3y2 – y2
= 3x2 – 7xy – 2y2

(iii) (x + b + c) (a – b + c) – (a + b – c) (a – b – c)
ସମାଧାନ:
(a + b + c)(a – b + c) – (a + b – c)(a – b – c)
= [a(a – b + c) + b(a – b + c) + c(a – b + c)] – [a(a – b – c) + b(a – b – c) – c(a – b – c)]
= (a2 – ab + ca + ab – b2 + bc + ca –  bc + c2) – (a2 – ab – ac + ab – b2 – bc – ca + bc + c2)
= (a2 – b2 + c2 – ab + ab + ca + ca + bc – bc) – (a2 – b2 + c2 – ab + ab – ac – ac – bc + bc)
= (a2 – b2 + c2 + 2ca) – (a2 – b2 + c2 – 2ca) = a2 – b2 + c2 + 2ca – a2 + b2 – c2 + 2ca
= a2 – a2 – b2 + b2 + c2 – c2 + 2ca + 2ca = 4ca

Leave a Comment