CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c)

Odisha State Board Elements of Mathematics Class 11 Solutions CHSE Odisha Chapter 14 Limit and Differentiation Ex 14(c) Textbook Exercise Questions and Answers.

CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Exercise 14(c)

Question 1.

Evaluate the following limits :
(i) \(\lim _{x \rightarrow 0} \frac{x}{\sin 2 x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c)

(ii) \(\lim _{x \rightarrow 0} \frac{\sin 3 x}{\sin 5 x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 1

(iii) \(\lim _{x \rightarrow 0} \frac{\sin m x}{\sin n x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 2

(iv) \(\lim _{x \rightarrow 0} \frac{\tan \alpha x}{x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 3

(v) \(\lim _{x \rightarrow 0} \frac{1-\cos x}{x^2}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 4

(vi) \(\lim _{x \rightarrow 0} \frac{\sin x^{\circ}}{x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 5

CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c)

(vii) \(\lim _{x \rightarrow \pi} \frac{\sin x}{\pi-x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 6

(viii) \(\lim _{x \rightarrow \frac{\pi}{2}} \frac{1-\sin x}{\left(\frac{\pi}{2}-x\right)^2}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 7

(ix) \(\lim _{x \rightarrow 0} \frac{1-\cos ^3 x}{x \sin 2 x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 8

(x) \(\lim _{x \rightarrow 0} \frac{1+\sin x-\cos x}{1-\sin x-\cos x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 9

(xi) \(\lim _{x \rightarrow 0} \frac{\tan x-\sin x}{x^3}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 10

(xii) \(\lim _{x \rightarrow 0} \frac{(1-\cos x)^2}{\tan ^3 x-\sin ^3 x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 11

(xiii) \(\lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{\pi}{2}-x\right) \tan x\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 12

(xiv) \(\lim _{x \rightarrow \frac{\pi}{4}} \frac{\cos x-\sin x}{\cos 2 x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 13

(xv) \(\lim _{x \rightarrow 0} \frac{x-x \cos 2 x}{\sin ^3 2 x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 14

(xvi) \(\lim _{x \rightarrow 0} \frac{\sqrt{1+\sin x}-\sqrt{1-\sin x}}{\tan x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 15

(xvii) \(\lim _{x \rightarrow 0} \frac{2 \sin x-\sin 2 x}{x^3}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 16

CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c)

(xviii) \(\lim _{x \rightarrow 0} \frac{\cos x-\cos 5 x}{\cos 2 x-\cos 6 x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 17

(xix) \(\lim _{x \rightarrow 0} \frac{\sin ^{-1} x}{x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 18

Question 2.
Evaluate
(i) \(\lim _{x \rightarrow \alpha} \frac{x \sin \alpha-\alpha \sin x}{x-\alpha}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 19

(ii) \(\lim _{x \rightarrow 0} x \sin \frac{1}{x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 20

Question 3.
Evaluate the following limits :
(i) \(\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 21

(ii) \(\lim _{h \rightarrow 0} \frac{\cos (x+h)-\cos x}{h}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 22

(iii) \(\lim _{h \rightarrow 0} \frac{\tan (x+h)-\tan x}{h}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 23

(iv) \(\lim _{h \rightarrow 0} \frac{{cosec}(x+h)-{cosec} x}{h}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 24

(v) \(\lim _{h \rightarrow 0} \frac{\sec (x+h)-\sec x}{h}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 25

(vi) \(\lim _{h \rightarrow 0} \frac{\cot (x+h)-\cot x}{h}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 26

(vii) \(\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 27

(viii) \(\lim _{h \rightarrow 0} \frac{\log _{\mathrm{a}}(x+h)-\log _a x}{h}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 28

(ix) \(\lim _{h \rightarrow 0} \frac{\ln (x+h)-\ln x}{h}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 29

(x) \(\lim _{h \rightarrow 0} \frac{a^{x+h}-e^x}{h}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 30

(xi) \(\lim _{h \rightarrow 0} \frac{e^{x+h}-e^x}{h}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 31

CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c)

(xii) \(\lim _{h \rightarrow 0}\left\{\frac{1}{(x+h)^3}-\frac{1}{x^3}\right\}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 32

(xiii) \(\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin (x-h)}{h}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 33

(xiv) \(\lim _{h \rightarrow 0} \frac{1}{h}\left\{\frac{1}{\sqrt{x+h}-\frac{1}{\sqrt{x}}}\right\}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 34

Question 4.
Evaluate the following :
(i) \(\lim _{x \rightarrow 0} \frac{\log _e\left(1+\frac{x}{2}\right)}{x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 35

(ii) \(\lim _{x \rightarrow 1} \frac{x-1}{\log _e x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 36

(iii) \(\lim _{x \rightarrow 1} \frac{\log _e(2 x-1)}{x-1}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 37

(iv) \(\lim _{x \rightarrow 0} \frac{\log _e(x+1)}{\sqrt{x+1}-1}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 38

(v) \(\lim _{x \rightarrow 2} \frac{\log _e(x-1)}{x^2-3 x+2}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 39

(vi) \(\lim _{x \rightarrow 0} \frac{e^{a x}-1}{x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 40

(vii) \(\lim _{x \rightarrow 0} \frac{e^{a x}-e^{-a x}}{x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 41

(viii) \(\lim _{x \rightarrow 0} \frac{e^{3 x}-e^{2 x}}{e^{4 x}-e^{3 x}}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 42

(ix) \(\lim _{x \rightarrow 0} \frac{a^{2 x}-1}{x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 43

(x) \(\lim _{x \rightarrow 0} \frac{a^x-b^x}{x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 44

(xi) \(\lim _{x \rightarrow 1} \frac{2^{x-1}-1}{x-1}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 45

(xii) \(\lim _{x \rightarrow 0} \frac{a^x-a^{-x}}{x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 46

(xiii) \(\lim _{x \rightarrow 1} \frac{3^x-3}{x-1}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 47

CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c)

(xiv) \(\lim _{x \rightarrow 0} \frac{3^x-2^x}{4^x-3^x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 48

(xv) \(\lim _{x \rightarrow 1} \frac{2^{x-1}-1}{\sqrt{x}-1}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 49

Question 5.
Evaluate the following :
(i) \(\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 50

(ii) \(\lim _{x \rightarrow 0} \frac{\sqrt{x+2}-\sqrt{2}}{x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 51

(iii) \(\lim _{x \rightarrow 0} \frac{\sqrt{x}-\sqrt{5}}{x-5}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 52

(iv) \(\lim _{x \rightarrow 0} \frac{\sqrt{3-2 x}-\sqrt{3}}{x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 53

(v) \(\lim _{x \rightarrow 5} \frac{\sqrt{x-1}-2}{x-5}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 54

(vi) \(\lim _{x \rightarrow 1} \frac{x^2-\sqrt{x}}{\sqrt{x}-1}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 55

(vii) \(\lim _{x \rightarrow a} \frac{\sqrt{x-b}-\sqrt{a-b}}{x^2-a^2}\), (a > b)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 56

(viii) \(\lim _{x \rightarrow 1} \frac{x^{\frac{1}{m}}-1}{x^{\frac{1}{n}}-1}\) (m, n are integers)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 57

(ix) \(\lim _{x \rightarrow 0} \frac{\sqrt{x^2+1}-1}{\sqrt{x^2+4}-2}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 58
= \(\frac{2+2}{1+1}=\frac{4}{2}\) = 2

(x) \(\lim _{x \rightarrow \infty}(\sqrt{x+1}-\sqrt{x})\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 59

(xi) \(\lim _{x \rightarrow \infty}\left(\sqrt{x^2+1}-\sqrt{x^2-1}\right)\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 60

CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c)

(xii) \(\lim _{x \rightarrow 0} \frac{\sqrt[3]{1+x}-\sqrt[3]{1-x}}{x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 61

(xiii) \(\lim _{x \rightarrow 0} \frac{(x+9)^{\frac{3}{2}}-27}{x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 62

(xiv) \(\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt[3]{1+x}-\sqrt[3]{1-x}}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 63

(xv) \(\lim _{x \rightarrow \infty} \frac{a_0+a_1 x+a_2 x^2+\ldots+a_m x^m}{b_0+b_1 x+b_2 x^2+\ldots+b_n x^n}\)
Solution:
\(\lim _{x \rightarrow \infty} \frac{a_0+a_1 x+a_2 x^2+\ldots+a_m x^m}{b_0+b_1 x+b_2 x^2+\ldots+b_n x^n}\)
= \(\left\{\begin{array}{lll}
\infty & \text { if } & m>n \\
0 & \text { if } & m<n \\
\frac{a_m}{b_n} & \text { if } & m=n
\end{array}\right.\)

Question 6.
Evaluate the following :
(i) \(\lim _{x \rightarrow \infty} \frac{\sin x}{x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 64

(ii) \(\lim _{x \rightarrow \infty} x\left(a^{\frac{1}{x}}-1\right)\), a > 0
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 65

(iii) \(\lim _{x \rightarrow 0} \frac{x^{\frac{1}{2}}+2 x+3 x^{\frac{3}{2}}}{2 x^{\frac{1}{2}}-2 x^{\frac{5}{2}}+4 x^{\frac{7}{2}}}\)
Solution:
\(\lim _{x \rightarrow 0} \frac{x^{\frac{1}{2}}+2 x+3 x^{\frac{3}{2}}}{2 x^{\frac{1}{2}}-2 x^{\frac{5}{2}}+4 x^{\frac{7}{2}}}\)
= \(\lim _{x \rightarrow 0} \frac{1+2 \sqrt{x}+3 x}{2-2 x^2+4 x^3}=\frac{1}{2}\)

(iv) \(\lim _{x \rightarrow \infty} \sqrt{x}\{\sqrt{x+1}-\sqrt{x}\}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 66

(v) \(\lim _{x \rightarrow \infty} x^2\left\{\sqrt{x^4+a^2}-\sqrt{x^4-a^2}\right\}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 67

(vi) \(\lim _{x \rightarrow 0} \cos (\sin x)\)
Solution:
\(\lim _{x \rightarrow 0} \cos (\sin x)\)
= cos (sin 0) = cos 0 = 1

(vii) \(\lim _{x \rightarrow 0} \log _e \frac{\sqrt{1+x}-1}{x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 68

CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c)

(viii) \(\lim _{x \rightarrow 2} \log _e \frac{x^2-4}{\sqrt{3 x-2}-\sqrt{x+2}}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 69

(ix) \(\lim _{x \rightarrow \infty} \log _e\left(1+\frac{a}{x}\right)^x\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 70

(x) \(\lim _{x \rightarrow 0} \log _e(1+b x)^{\frac{1}{x}}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 71

(xi) \(\lim _{x \rightarrow \frac{\pi}{4}} \frac{\sin \left(\frac{1-\tan x}{1+\tan x}\right)}{\frac{\pi}{4}-x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 72

(xii) \(\lim _{x \rightarrow \frac{\pi}{2}} \log \frac{1-\sin ^3 x}{\cos ^2 x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 73

(xiii) \(\lim _{x \rightarrow \infty} e^x\left(a^{\frac{1}{x}}-1\right)\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 74

(xiv) \(\lim _{x \rightarrow 0} \frac{x\left(e^{\frac{\sqrt{1+x^2+x^4-1}}{x}-1}\right)}{\sqrt{1+x^2+x^4}-1}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 75

(xv) \(\lim _{x \rightarrow 0+} \frac{b \tan x\left(e^{\sin \frac{a x}{b x}-\frac{a}{b}}\right)}{b \sin a x-a \tan b x}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 76

Question 7.
Examine the existence of the following limits :
(i) \(\lim _{x \rightarrow 0+} \log _a x\)
Solution:
\(\lim _{x \rightarrow 0+} \log _a x\)
= \(\lim _{h \rightarrow 0} \log _a h=-\infty\)
∴ The limit exists

(ii) \(\lim _{x \rightarrow \frac{\pi}{2}} \tan x\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 77

(iii) \(\lim _{x \rightarrow 0}{cosec} x\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 78

(iv) \(\lim _{x \rightarrow 0-} \frac{1}{e^x}\)
Solution:
\(\lim _{x \rightarrow 0-} \frac{1}{e^x}\) = 0 because as
x → 0, \(\frac{1}{x}\) → ∞
So \(e^{\frac{1}{x}}\) → 0
∴ The limit exists.

(v) \(\lim _{x \rightarrow 0+} \frac{1}{e^x}\)
Solution:
\(\lim _{x \rightarrow 0+} \frac{1}{e^x}\) = \(\lim _{h \rightarrow 0} e^{\frac{1}{h}}=e^{\infty}\) = ∞
The limit exists.

(vi) \(\lim _{x \rightarrow 0} \frac{1}{e^{\frac{1}{x}}-1}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 79

Question 8.
(i) \(\lim _{x \rightarrow \alpha} \frac{\tan a(x-\alpha)}{x-\alpha}=\frac{1}{2}\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 80

(ii) \(\lim _{x \rightarrow \alpha} \frac{\tan a x}{\sin 2 x}=1\)
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 81

(iii) \(\lim _{x \rightarrow 0} \frac{e^{a x}-e^x}{x}\) = 2
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 82

(iv) \(\lim _{x \rightarrow 1} \frac{5^x-5}{(x-1) \log _e a}\) = 5
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 83

(v) \(\lim _{x \rightarrow 2} \frac{\log _e(2 x-3)}{a(x-2)}\) = 1
Solution:
CHSE Odisha Class 11 Math Solutions Chapter 14 Limit and Differentiation Ex 14(c) 84

Leave a Comment