CHSE Odisha Class 12 Math Solutions Chapter 12 Vectors Ex 12(b)

Odisha State Board CHSE Odisha Class 12 Math Solutions Chapter 12 Vectors Ex 12(b) Textbook Exercise Questions and Answers.

CHSE Odisha Class 12 Math Solutions Chapter 12 Vectors Exercise 12(b)

Question 1.
Each question given below has four possible answers, out of which only one is correct. Choose the correct one.
(i) (2î – 4ĵ) . (î + ĵ + k̂) = _______.
(a) -3
(b) +2
(c) -1
(d) -2
Solution:
(d) -2

(ii) If a = î + 2ĵ – k̂, b = î + ĵ + 2k̂, c = 2î – ĵ; then
(a) \(\vec{a} \perp \vec{b}\)
(b) \(\vec{b} \perp \vec{c}\)
(c) \(\vec{a} \perp \vec{c}\)
(d) no pair of vectors are perpendicular.
Solution:
(c) \(\vec{a} \perp \vec{c}\)

(iii) (-3, λ, 1) ⊥ (1, 0, -3) ⇒ λ = _______.
(a) 0
(b) 1
(c) impossible to find
(d) any real number
Solution:
(c) impossible to find

(iv) If \(\vec{a} \cdot \vec{b}=\vec{c} \cdot \vec{a}\) for all vectors \(\vec{a}\), then
(a) \(\vec{a} \perp(\vec{b}-\vec{c})\)
(b) \(\vec{b}-\vec{c}\) = 0
(c) \(\vec{b} \neq \vec{c}\)
(d) \(\vec{b}+\vec{c}=\overrightarrow{0}\)
Solution:
(b) \(\vec{b}-\vec{c}\) = 0

CHSE Odisha Class 12 Math Solutions Chapter 12 Vectors Ex 12(b)

Question 2.
Find the scalar product of the following pairs of vectors and the angle between them.
(i) 3î – 4ĵ and -2î + ĵ
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 12 Vectors Ex 12(b) Q.2(1)

(ii) 2î – 3ĵ + 6k̂ and 2î – 3ĵ – 5k̂
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 12 Vectors Ex 12(b) Q.2(2)

(iii) î – ĵ and ĵ + k̂
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 12 Vectors Ex 12(b) Q.2(3)

(iv) \(\vec{a}\) = (2, -2, 1) and \(\vec{b}\) = (0, 2, 4)
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 12 Vectors Ex 12(b) Q.2(4)

Question 3.
If A, B, C are the points (1, 0, 2), (0, 3, 1) and (5, 2, 0) respectively, find m∠ABC.
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 12 Vectors Ex 12(b) Q.3

CHSE Odisha Class 12 Math Solutions Chapter 12 Vectors Ex 12(b)

Question 4.
Find the value of λ so that the vectors \(\vec{a}\) and \(\vec{b}\) are perpendicular to each other.
(i) \(\vec{a}\) = 3î + 4ĵ, \(\vec{b}\) = -5î + λĵ
Solution:
If \(\vec{a}\) and \(\vec{b}\) are perpendicular \(\vec{a} \cdot \vec{b}\) = 0
⇒ (3î + 4ĵ) . (-5î + λĵ) = 0
⇒ -15 + 4λ = 0
⇒ λ = \(\frac{15}{4}\)

(ii) \(\vec{a}\) = î + ĵ + λk̂, \(\vec{b}\) = 4î – 3k̂
Solution:
If \(\vec{a}\) and \(\vec{b}\) are perpendicular \(\vec{a} \cdot \vec{b}\) = 0
⇒ ( î + ĵ + λk̂) . (4î – 3k̂) = 0
⇒ 4 + 0 – 3λ = 0
⇒ λ = \(\frac{4}{3}\)

(iii) \(\vec{a}\) = 2î – ĵ – k̂, \(\vec{b}\) = λî + ĵ + 5k̂
Solution:
If \(\vec{a}\) and \(\vec{b}\) are perpendicular \(\vec{a} \cdot \vec{b}\) = 0
⇒ (2î – ĵ – k̂) . (λî + ĵ + 5k̂) = 0
⇒ 2λ – 1 – 5 = 0
⇒ 2λ = 6
⇒ λ = 3

(iv) \(\vec{a}\) = (6, 2, -3), \(\vec{b}\) = (1, -4, λ)
Solution:
If \(\vec{a}\) and \(\vec{b}\) are perpendicular \(\vec{a} \cdot \vec{b}\) = 0
⇒ (6, 2, -3) . (1, -4, λ) = 0
⇒ 6 – 8 – 3λ = 0
⇒ -2 – 3λ = 0
⇒ λ = –\(\frac{2}{3}\)

Question 5.
Find the scalar and vector projections of \(\vec{a}\) on \(\vec{b}\).
(i) \(\vec{a}\) = î, \(\vec{b}\) = ĵ
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 12 Vectors Ex 12(b) Q.5(1)

(ii) \(\vec{a}\) = î + ĵ, \(\vec{b}\) = ĵ + k̂
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 12 Vectors Ex 12(b) Q.5(2)

(iii) \(\vec{a}\) = î – ĵ – k̂, \(\vec{b}\) = 3î + ĵ + 3k̂
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 12 Vectors Ex 12(b) Q.5(3)

Question 6.
In each of the problems given below, find the work done by a force \(\overrightarrow{F}\) acting on a particle, such that the particle is displaced from a point A to a point B.
(i) \(\overrightarrow{F}\) = 4î + 2ĵ + 3k̂
A (1, 2, 0), B (2, -1, 3)
Solution:
Displacement of the particle \(\overrightarrow{S}=\overrightarrow{AB}\)
= (2 – 1)î + (-1 – 2)ĵ + (3 – 0)k̂
=î – 3ĵ + 3k̂
Work done = \(\overrightarrow{F} \cdot \overrightarrow{S}\)
= (4î + 2ĵ + 3k̂) . (î – 3ĵ + 3k̂)
= 4 – 6 + 9
= 7 units.

(ii) \(\overrightarrow{F}\) = 2î + ĵ – k̂
A (0, 1, 2), B (-2, 3, 0)
Solution:
Displacement
\(\vec{S}\) = (-2 – 0)î + (3 – 1)ĵ + (0 – 2)k̂
= -2î + 2ĵ – 2k̂
Work done = \(\overrightarrow{F} \cdot \overrightarrow{S}\)
= (2î + ĵ – k̂) . (-2î + 2ĵ – 2k̂)
= -4 + 2 + 2
= 0 units.

CHSE Odisha Class 12 Math Solutions Chapter 12 Vectors Ex 12(b)

(iii) \(\overrightarrow{F}\) = 4î – 3k̂
A (1, 2, 0), B (0, 2, 3)
Solution:
Displacement \(\vec{S}\) = -î + 3k̂
Work done = \(\overrightarrow{F} \cdot \overrightarrow{S}\)
= (4î – 3k̂) . (-î + 3k̂)
= -4 – 9
= -13 units.

(iv) \(\overrightarrow{F}\) = 3î – ĵ – 2k̂
A (-3, -4, 1), B (-1, -1, -2)
Solution:
Displacement \(\vec{S}\) = 2î + 3ĵ – 3k̂
Work done \(\overrightarrow{F} \cdot \overrightarrow{S}\)
= (3î – ĵ – 2k̂) . (2î + 3ĵ – 3k̂)
= 6 – 3 + 6
= 9 units.

Question 7.
If \((\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})\) = 0 show that \(|\vec{a}|=|\vec{b}|\).
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 12 Vectors Ex 12(b) Q.7

Question 8.
(i) If a and b are perpendicular vectors show that
CHSE Odisha Class 12 Math Solutions Chapter 12 Vectors Ex 12(b) Q.8
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 12 Vectors Ex 12(b) Q.8.1

(ii) Prove that two vectors are perpendicular iff \(|\vec{a}+\vec{b}|^2=|\vec{a}|^2+|\vec{b}|^2\)
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 12 Vectors Ex 12(b) Q.8.2

Question 9.
If \(\vec{a}, \vec{b}, \vec{c}\) are mutually perpendicular vectors of equal magnitude, show that \(\vec{a}+\vec{b}+\vec{c}\) is equally inclined to \(\vec{a} \cdot \vec{b} \cdot \vec{c}\)
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 12 Vectors Ex 12(b) Q.9

CHSE Odisha Class 12 Math Solutions Chapter 12 Vectors Ex 12(b)

Question 10.
Prove the following by vector method.
(i) Altitudes of a triangle are concurrent;
Solution:
Let ABC be a triangle.
CHSE Odisha Class 12 Math Solutions Chapter 12 Vectors Ex 12(b) Q.10(1)
⇒ CF is perpendicular to AB.
Hence the altitudes of a triangle are concurrent.

(ii) Median to the base of an isosceles triangle is perpendicular to the base;
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 12 Vectors Ex 12(b) Q.10(2)
⇒ OD is perpendicular to the base AB.
Hence the median to the base of an isosceles triangle is perpendicular to the base. (Proved)

(iii) The parallelogram whose diagonals are equal is a rectangle;
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 12 Vectors Ex 12(b) Q.10(3)
⇒ m∠COA = 90°
Hence OABC is a rectangle. (Proved)

(iv) The diagonals ofa rhombus are at right angles;
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 12 Vectors Ex 12(b) Q.10(4)
Hence the diagonals of a rhombus are at right angles. (Proved)

CHSE Odisha Class 12 Math Solutions Chapter 12 Vectors Ex 12(b)

(v) An angle inscribed in a semi-circle is a right angle;
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 12 Vectors Ex 12(b) Q.10(5)
∴ m∠ABC = 90°
Hence the angle inscribed in a semi-circle is a right-angle. (Proved)

(vi) In any triangle ABC; a = b cos C + c cos B;
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 12 Vectors Ex 12(b) Q.10(6)

(vii) In a triangle AOB, m∠AOB = 90°. If P and Q are the points of trisection of AB, prove that OP2 + OQ2 = \(\frac{5}{9}\) AB2;
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 12 Vectors Ex 12(b) Q.10(7)

(viii) Measure of the angle between two diagonals of a cube is cos-1\(\frac{1}{3}\).
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 12 Vectors Ex 12(b) Q.10(8)

Leave a Comment