CHSE Odisha Class 12 Math Solutions Chapter 9 Integration Ex 9(c)

Odisha State Board Elements of Mathematics Class 12 Solutions CHSE Odisha Chapter 9 Integration Ex 9(c) Textbook Exercise Questions and Answers.

CHSE Odisha Class 12 Math Solutions Chapter 9 Integration Exercise 9(c)

Integrate the following:
Question 1.
(i) ∫sin 4x cos 3x dx
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 9 Integration Ex 9(c) Q.1(1)

(ii) ∫cos 5x cos 2x dx
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 9 Integration Ex 9(c) Q.1(2)

(iii) ∫sin x cos 4x dx
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 9 Integration Ex 9(c) Q.1(3)

(iv) ∫sin 6x sin 3x dx
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 9 Integration Ex 9(c) Q.1(4)

(v) ∫cos 4x cos 5x sin 2x dx
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 9 Integration Ex 9(c) Q.1(5)

CHSE Odisha Class 12 Math Solutions Chapter 9 Integration Ex 9(c)

(vi) ∫sin\(\frac{3 x}{4}\) cos\(\frac{x}{2}\) dx
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 9 Integration Ex 9(c) Q.1(6)

(vii) ∫cos 2x cos\(\frac{x}{2}\) dx
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 9 Integration Ex 9(c) Q.1(7)

(viii) ∫sin\(\frac{x}{2}\) sin\(\frac{x}{3}\) cos\(\frac{x}{4}\) dx
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 9 Integration Ex 9(c) Q.1(8)

Question 2.
(i) ∫cos2 x dx
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 9 Integration Ex 9(c) Q.2(1)

(ii) ∫sin3 x dx
Solution:
(ii) ∫sin3 x dx = ∫sin2 x . sin x dx
= ∫(1 – cos2 x) . sin x dx
[Put cos x = t
Then sin x dx = -dt]
= ∫(1 – t2) . (-dt) = \(\frac{1}{3}\)t3 – t + C
= \(\frac{1}{3}\)cos3 x – cos x + C

(iii) ∫cos4 x dx
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 9 Integration Ex 9(c) Q.2(3)

CHSE Odisha Class 12 Math Solutions Chapter 9 Integration Ex 9(c)

(iv) ∫sin5 x dx
Solution:
∫sin5 x dx = ∫sin4 x sin x dx
= ∫(1 – cos2 x)2. sin x dx
[Put cos x = t
Then sin x dx = -dt]
= -∫(1 – t2)2 dt
= -∫(1 – 2t + t4) dt
= -(t – \(\frac{2}{3}\)t3 + \(\frac{1}{5}\)t5) + C
= \(\frac{2}{3}\)cos3 x – cos x – \(\frac{1}{5}\)cos5 x + C

(v) ∫cos7 x dx
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 9 Integration Ex 9(c) Q.2(5)

(vi) ∫sin6 x dx
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 9 Integration Ex 9(c) Q.2(6)

(vii) ∫cos5 x sin3 x dx
Solution:
∫cos5 x sin3 x dx
= ∫cos5 x (1 – cos2 x) sin x dx
[Put cos x = t Then sin x dx = -dt]
= ∫t5 (1 – t2 ). (-dt) = ∫(t7 – t5) dt
=  \(\frac{1}{8}\)t8 – \(\frac{1}{8}\)t6 + C
= \(\frac{1}{8}\)cos8 x – \(\frac{1}{8}\)cos6 x + C

(viii) ∫sin20 x cos20 x dx
Solution:
∫sin20 x cos20 x dx
= ∫sin20 x (1 – sin2 x) cos x dx
[Put sin x = t
Then cos x dx = -dt]
= ∫t20 (1 – t20). (-dt) = ∫(t20 – t22) dt
=  \(\frac{1}{21}\)t21 – \(\frac{1}{23}\)t23 + C
= \(\frac{1}{21}\)sin21 x – \(\frac{1}{23}\)sin23 x + C

(ix) ∫\(\frac{\sin ^3 x}{\cos ^6 x}\) dx
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 9 Integration Ex 9(c) Q.2(9)

(x) ∫cot3 x cosec16 x dx
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 9 Integration Ex 9(c) Q.2(10)

(xi) ∫sec30 x tan x dx
Solution:
∫sec30 x tan x dx
= ∫sec29 x . sec x . tan x dx
[Put sec x = t
Then sec x. tan x dx = dt]
= ∫t29 dt
= \(\frac{1}{30}\)t30 + C
= \(\frac{1}{30}\)sec30 x + C

(xii) ∫sin3 x sec14 x dx
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 9 Integration Ex 9(c) Q.2(12)

CHSE Odisha Class 12 Math Solutions Chapter 9 Integration Ex 9(c)

Question 3.
(i) ∫sin4 x cos4 x dx
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 9 Integration Ex 9(c) Q.3(1)

(ii) ∫sin 3x cos2 x dx
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 9 Integration Ex 9(c) Q.3(2)

(iii) ∫cos 2x sin3 x dx
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 9 Integration Ex 9(c) Q.3(3)

(iv) ∫sin4 x cos2 x dx
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 9 Integration Ex 9(c) Q.3(4)

Question 4.
(i) ∫tan5 θ sec4 θ dθ
Solution:
∫tan5 θ sec4 θ dθ
= ∫tan5 θ (1 + tan2 θ) sec2 θ dθ
[Put tan θ = t
Then sec2 θ dθ = dt]
= ∫t5 (1 + t2) dt = ∫(t5 + t7) dt
= \(\frac{1}{6}\)t6 + \(\frac{1}{8}\)t8 + C
= \(\frac{1}{6}\)tan6 θ + \(\frac{1}{8}\)tan8 θ + C

(ii) ∫cot4 θ cosec4 θ dθ
Solution:
∫cot4 θ cosec4 θ dθ
= ∫cot4 θ (1 + cot2 θ) cosec2 θ dθ
[Put cot θ = t
Then cosec2 θ dθ = -dt]
= ∫t4 (1 + t2) (-dt) = ∫(t4 + t6) dt
= -{\(\frac{1}{5}\)t5 + \(\frac{1}{7}\)t7} + C
= -{\(\frac{1}{5}\)cot5 θ+ \(\frac{1}{7}\)cot7 θ} + C

(iii) ∫sec11 θ tan θ dθ
Solution:
∫sec11 θ tan θ dθ
= ∫sec10 θ sec θ tan θ dθ
[Put sec θ = t
Then sec θ tan θ dθ = -dt]
= ∫t10 dt = \(\frac{1}{11}\)t11 + C
= \(\frac{1}{11}\)sec11 θ + C

(iv) ∫cot θ cosec7 θ dθ
Solution:
∫cot θ cosec7 θ dθ
= ∫cosec6 θ . (cosec θ – cot θ) dθ
[Put sec θ = t
Then cosec θ . cot θ dθ = dt]
= ∫t6 (dt) = –\(\frac{1}{17}\)t7 + C
= –\(\frac{1}{17}\)cosec7 θ + C

(v) ∫tan3 θ dθ
Solution:
∫tan3 θ d0 = ∫tan θ – (tan2 θ) dθ
= ∫tan θ (sec2 θ – 1) dθ
= ∫tan θ sec2 θ dθ – ∫tan θ dθ
= ∫tan θ d(tan θ) – ∫tan θ dθ
= \(\frac{1}{2}\)tan2 θ + ln |cos θ| + C

CHSE Odisha Class 12 Math Solutions Chapter 9 Integration Ex 9(c)

(vi) ∫cot4 θ dθ
Solution:
∫cot4 θ dθ = ∫cot2 θ cot2 θ dθ
= ∫cot2 θ (cosec2 θ – 1) dθ
= ∫cot2 θ . cosec2 θ dθ – ∫cot2 θ dθ
= ∫cot2 θ . cosec2 θ dθ – ∫(cosec2 θ – 1) dθ
= \(\frac{1}{3}\)cot3 θ + cot θ + θ + C

(vii) ∫tan5 θ dθ
Solution:
∫tan5 θ dθ = ∫tan3 θ . (sec2 θ – 1) dθ
= ∫tan3 θ . sec2 θ dθ – ∫tan3 θ dθ
= ∫tan3 θ . sec2 θ dθ – ∫tan θ (sec2 θ – θ) dθ
= ∫tan3 θ d(tan θ) – ∫tan θ d(tan θ) + ∫tan θ dθ
= \(\frac{1}{4}\)tan4 θ – \(\frac{1}{2}\)tan2 θ + ln |sec θ| + C

(viii) ∫cot6 θ dθ
Solution:
∫cot6 θ dθ
= ∫cot4 θ (cosec2 θ – 1) dθ
= ∫cot4 θ . cosec2 θ dθ – ∫cot4 θ dθ
= ∫cot4 θ cosec2 θ dθ – ∫cot2 θ (cosec2 θ – 1) dθ
= ∫cot4 θ . cosec2 θ dθ – ∫cot2 θ cosec2 θ dθ + ∫(cosec2 θ – 1) dθ
= -cot4 θ d(cot θ) + ∫cot2 θ d(cot θ) + ∫cosec2 θ dθ – ∫dθ
= –\(\frac{1}{5}\)cot5 θ + \(\frac{1}{3}\)cot3 θ – cot θ – θ + C

Question 5.
(i) \(\frac{\sin a x-\sin b x}{\cos a x-\cos b x}\) dx
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 9 Integration Ex 9(c) Q.5(1)

(ii) \(\frac{\cos p x+\cos q x}{\sin p x+\sin q x}\) dx
Solution:
\(\frac{\cos p x+\cos q x}{\sin p x+\sin q x}\) dx
CHSE Odisha Class 12 Math Solutions Chapter 9 Integration Ex 9(c) Q.5(2)

(iii) \(\frac{\sin 4 x-\sin 2 x}{\cos x}\) dx
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 9 Integration Ex 9(c) Q.5(3)

(iv) \(\frac{\sin 2 x}{a \cos ^2 x+b \sin ^2 x+c}\) dx
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 9 Integration Ex 9(c) Q.5(4)

Leave a Comment