CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a)

Odisha State Board Elements of Mathematics Class 12 Solutions CHSE Odisha Chapter 5 Determinants Ex 5(a) Textbook Exercise Questions and Answers.

CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Exercise 5(a)

Question 1.
Evaluate the following determinants.
(i) \(\left|\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right|\)
Solution:
\(\left|\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right|\) = 3 – 2 = 1

(ii) \(\left|\begin{array}{ll}
2 & -3 \\
1 & -4
\end{array}\right|\)
Solution:
\(\left|\begin{array}{ll}
2 & -3 \\
1 & -4
\end{array}\right|\) = -8 + 3 = -5

(iii) \(\left|\begin{array}{ll}
\sec \theta & \tan \theta \\
\tan \theta & \sec \theta
\end{array}\right|\)
Solution:
\(\left|\begin{array}{ll}
\sec \theta & \tan \theta \\
\tan \theta & \sec \theta
\end{array}\right|\) = sec2 θ – tan2 θ = 1

(iv) \(\left|\begin{array}{ll}
0 & x \\
2 & 0
\end{array}\right|\)
Solution:
\(\left|\begin{array}{ll}
0 & x \\
2 & 0
\end{array}\right|\) = 0 – 2x = -2x

(v) \(\left|\begin{array}{cc}
1 & \omega \\
-\omega & \omega
\end{array}\right|\)
Solution:
\(\left|\begin{array}{cc}
1 & \omega \\
-\omega & \omega
\end{array}\right|\) = ω + ω2 = -1

CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a)

(vi) \(\left|\begin{array}{cc}
4 & -1 \\
3 & 2
\end{array}\right|\)
Solution:
\(\left|\begin{array}{cc}
4 & -1 \\
3 & 2
\end{array}\right|\) = 8 + 3 = 11

(vii) \(\left|\begin{array}{ll}
\cos \theta & \sin \theta \\
\sin \theta & \cos \theta
\end{array}\right|\)
Solution:
\(\left|\begin{array}{ll}
\cos \theta & \sin \theta \\
\sin \theta & \cos \theta
\end{array}\right|\) = cos2 θ – sin2 θ = cos 2θ

(viii) \(\left|\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right|\)
Solution:
\(\left|\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right|\) = 0
as the rows are identical.

(ix) \(\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|\)
Solution:
\(\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|\) = 1\(\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|\) = 1 – 0 = 1

(x) \(\left|\begin{array}{ccc}
2 & 3 & 1 \\
0 & 0 & 0 \\
-1 & 2 & 0
\end{array}\right|\)
Solution:
\(\left|\begin{array}{ccc}
2 & 3 & 1 \\
0 & 0 & 0 \\
-1 & 2 & 0
\end{array}\right|\) = 0
as all the entries in the 2nd row are zero.

CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a)

(xi) \(\left|\begin{array}{ccc}
1 & x & y \\
0 & \sin x & \sin y \\
0 & \cos x & \cos y
\end{array}\right|\)
Solution:
\(\left|\begin{array}{ccc}
1 & x & y \\
0 & \sin x & \sin y \\
0 & \cos x & \cos y
\end{array}\right|\) = 1\(\left|\begin{array}{cc}
\sin x & \sin y \\
\cos x & \cos y
\end{array}\right|\)
= sin x cos y – cos x sin y = sin (x – y)

(xii) \(\left|\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3 \\
3 & 4 & 5
\end{array}\right|\)
Solution:
\(\left|\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3 \\
3 & 4 & 5
\end{array}\right|\) = 0 ( R1 = R2)

(xiii) \(\left|\begin{array}{lll}
0.2 & 0.1 & 3 \\
0.4 & 0.2 & 7 \\
0.6 & 0.3 & 2
\end{array}\right|\)
Solution:
\(\left|\begin{array}{lll}
0.2 & 0.1 & 3 \\
0.4 & 0.2 & 7 \\
0.6 & 0.3 & 2
\end{array}\right|\)
= 2\(\left|\begin{array}{lll}
0.2 & 0.1 & 3 \\
0.4 & 0.2 & 7 \\
0.6 & 0.3 & 2
\end{array}\right|\) = 0 ( C1 = C2)

(xiv) \(\left|\begin{array}{ccc}
1 & \omega & \omega^2 \\
\omega & \omega^2 & 1 \\
\omega^2 & 1 & \omega
\end{array}\right|\)
Solution:
\(\left|\begin{array}{ccc}
1 & \omega & \omega^2 \\
\omega & \omega^2 & 1 \\
\omega^2 & 1 & \omega
\end{array}\right|\)
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.1

(xv) \(\left|\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 3 & 3
\end{array}\right|\)
Solution:
\(\left|\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 3 & 3
\end{array}\right|\) = 0 ( C1 = C2)

(xvi) \(\left|\begin{array}{ccc}
-6 & 0 & 0 \\
3 & -5 & 7 \\
2 & 8 & 11
\end{array}\right|\)
Solution:
\(\left|\begin{array}{ccc}
-6 & 0 & 0 \\
3 & -5 & 7 \\
2 & 8 & 11
\end{array}\right|\)
= (-6) \(\left|\begin{array}{cc}
-5 & 7 \\
8 & 11
\end{array}\right|\) = = (-6) (- 55 – 56)
= (-6) (-111) = 666

CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a)

(xvii) \(\left|\begin{array}{lll}
1 & 0 & 0 \\
2 & 3 & 5 \\
4 & 1 & 3
\end{array}\right|\)
Solution:
\(\left|\begin{array}{lll}
1 & 0 & 0 \\
2 & 3 & 5 \\
4 & 1 & 3
\end{array}\right|\)
= 1 \(\left|\begin{array}{ll}
3 & 5 \\
1 & 3
\end{array}\right|\) = 9 – 5 = 4

(xviii) \(\left|\begin{array}{ccc}
-18 & 17 & 19 \\
3 & 0 & 0 \\
-14 & 5 & 2
\end{array}\right|\)
Solution:
\(\left|\begin{array}{ccc}
-18 & 17 & 19 \\
3 & 0 & 0 \\
-14 & 5 & 2
\end{array}\right|\)
= -3 \(\left|\begin{array}{cc}
17 & 19 \\
5 & 2
\end{array}\right|\)
(Expanding along 2nd row)
= – 3 (34 – 95)
= (-3) (-61) = 183

Question 2.
State true or false.
(i) If the first and second rows of a determinant be interchanged then the sign of the determinant is changed.
Solution:
True

(ii) If first and third rows of a determinant be interchanged then the sign of the determinent does not change.
Solution:
False

(iii) If in a third order determinant first row be changed to second column. Second row to 1st column and third row to third column, then the value of the determinant does not change.
Solution:
False

(iv) A row and a column of a determinant can have two or more common elements.
Solution:
False

(v) The minor and the co-factor of the element a32 of a determinant of third order are equal.
Solution:
False

(vi) \(\left|\begin{array}{lll}
3 & 1 & 3 \\
0 & 4 & 0 \\
1 & 3 & 1
\end{array}\right|\) = 0
Solution:
True

(vii) \(\left|\begin{array}{lll}
6 & 4 & 2 \\
4 & 0 & 7 \\
5 & 3 & 4
\end{array}\right|\) = \(\left|\begin{array}{lll}
6 & 4 & 5 \\
4 & 0 & 3 \\
2 & 7 & 3
\end{array}\right|\)
Solution:
True

CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a)

(viii) \(\left|\begin{array}{lll}
2 & 3 & 4 \\
5 & 6 & 7 \\
1 & 2 & 3
\end{array}\right|\) = \(\left|\begin{array}{lll}
4 & 2 & 3 \\
7 & 5 & 6 \\
3 & 1 & 2
\end{array}\right|\)
Solution:
True

Question 3.
Fill in the blanks with appropriate answer from the brackes.
(i) The value of \(\left|\begin{array}{ccc}
0 & 8 & 0 \\
25 & 520 & 25 \\
1 & 410 & 0
\end{array}\right|\) = _______. (0, 25, 200, -250)
Solution:
200

(ii) If ω is the cube root of unity, then \(\left|\begin{array}{ccc}
1 & \omega & \omega^2 \\
\omega & \omega^2 & 1 \\
\omega^2 & 1 & \omega
\end{array}\right|\) = _______. (1, 0, ω, ω2)
Solution:
0

(iii) The value of the determinant \(\left|\begin{array}{lll}
1 & a & b+c \\
1 & b & c+a \\
1 & c & a+b
\end{array}\right|\) = _______. (a + b – c, (a + b + c)2, 0, 1 + a + b + c)
Solution:
0

(iv) If \(\left|\begin{array}{lll}
a & b & c \\
b & a & b \\
x & b & c
\end{array}\right|\) = 0, then x = _______. (a, b, c, a + b + c)
Solution:
a

(v) \(\left|\begin{array}{lll}
a_1+a_2 & a_3+a_4 & a_5 \\
b_1+b_2 & b_3+b_4 & b_5 \\
c_1+c_2 & c_3+c_4 & c_5
\end{array}\right|\) can be expressed at the most as _______, different 3rd order determinants. (1, 2, 3, 4)
Solution:
4

(vi) Minimum value of \(\left|\begin{array}{cc}
\sin x & \cos x \\
-\cos x & 1+\sin x
\end{array}\right|\) is _______. (-1, 0, 1, 2)
Solution:
0

(vii) The determinant \(\left|\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 3 & 6
\end{array}\right|\) is not equal to _______. \(\left(\left|\begin{array}{lll}
2 & 1 & 1 \\
2 & 2 & 3 \\
2 & 3 & 6
\end{array}\right|,\left|\begin{array}{lll}
2 & 1 & 1 \\
3 & 2 & 3 \\
4 & 3 & 6
\end{array}\right|,\left|\begin{array}{lll}
1 & 2 & 1 \\
1 & 5 & 3 \\
1 & 9 & 6
\end{array}\right|,\left|\begin{array}{ccc}
3 & 1 & 1 \\
6 & 2 & 3 \\
10 & 3 & 6
\end{array}\right|\right)\)
Solution:
\(\left|\begin{array}{lll}
2 & 1 & 1 \\
2 & 2 & 3 \\
2 & 3 & 6
\end{array}\right|\)

(viii) With 4 different elements we can construct _______ number of different determinants of order 2. (1, 6, 8, 24)
Solution:
6

CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a)

Question 4.
Solve the following:
(i) \(\left|\begin{array}{cc}
4 & x+1 \\
3 & x
\end{array}\right|\)
Solution:
\(\left|\begin{array}{cc}
4 & x+1 \\
3 & x
\end{array}\right|\) = 5
or, 4x – 3x – 3 = 5 or, x = 8

(ii) \(\left|\begin{array}{ccc}
\boldsymbol{x} & a & a \\
m & m & m \\
b & x & b
\end{array}\right|\) = 0
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.4(2)
(Replacing C1 and C2 by C1 – C3 and C2 – C3 respectively)
⇒ m |(x – a) (-x + b)| = 0
⇒ m (x – a) (b – x) – 0 ⇒ x = a, b

(iii) \(\left|\begin{array}{lll}
7 & 6 & x \\
2 & x & 2 \\
x & 3 & 7
\end{array}\right|\) = 0
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.4(3)
or, (x – 7) (7x + x2 – 1 8) = 0
or, (x – 7) (x2 + 7x – 18) = 0
or, (x – 7) (x + 9) (x – 2) = 0
∴ x = -9, 2, 7

(iv) \(\left|\begin{array}{ccc}
0 & x-a & x-b \\
x+a & 0 & x-c \\
x+b & x+c & 0
\end{array}\right|\) = 0
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.4(4)
or, – (x – a) {0 – (x + b) (x – c)} + (x – b) (x + a) (x + c) = 0
or, (x – a) (x + b) (x – c) + (x – b) (x + a) (x + c) = 0
or, (x2 + bx – ax – ab) (x – c) + (x2 + ax – bx – ab) (x + c) = 0
or, x3 – cx2 + bx2 – bcx – ax2 + acx – abx + abc + x3 + cx2 + ax2 + acx- bx2 – bcx – abx – abc = 0
or, 2x3 – 2abx – 2bcx + 2acx = 0
or, 2x (x2 – ab – bc + ac) = 0
x = 0, x2 = ab + bc – ca
∴ x = 0, x = \(\sqrt{a b+b c-c a}\)

(v) \(\left|\begin{array}{ccc}
\boldsymbol{x}+\boldsymbol{a} & \boldsymbol{b} & \boldsymbol{c} \\
\boldsymbol{b} & \boldsymbol{x}+\boldsymbol{c} & \boldsymbol{a} \\
\boldsymbol{c} & \boldsymbol{a} & \boldsymbol{x}+\boldsymbol{b}
\end{array}\right|\) = 0
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.4(5)

⇒ (x + a + b + c) {x2 + bx + cx + bc – a2 – bx – b2 + ca + ab – cx – c2 = 0}
⇒ (x + a + b + c) {x2 – a2 – b2 – c2 + ab + bc + ca} = 0
⇒ x + a + b + c = 0
or, x2 – a2 – b2 – c2 + ab + bc + ca = 0
⇒ x = – (a + b + c)
∴ or x = \(\sqrt{a^2+b^2+c^2-a b-b c-c a}\)

CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a)

(vi) \(\left|\begin{array}{ccc}
1+x & 1 & 1 \\
1 & 1+x & 1 \\
1 & 1 & 1+x
\end{array}\right|\) = 0
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.4(6)

(vii) \(\left|\begin{array}{ccc}
1 & 4 & 20 \\
1 & -2 & 5 \\
1 & 2 x & 5 x^2
\end{array}\right|\) = 0
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.4(7)
⇒ -30x2 + 30 + 30x + 30 = 0
⇒ -30x2 + 30x + 60 = 0
⇒ x2 – x – 2 = 0
⇒ x2 – 2x + x + 2 = 0
⇒ (x – 2) (x + 1) = 0
⇒ x = 2, -1

(viii) \(\left|\begin{array}{ccc}
x+1 & \omega & \omega^2 \\
\omega & x+\omega^2 & 1 \\
\omega^2 & 1 & x+\omega
\end{array}\right|\) = 0
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.4(8)
⇒ x(x2 + xω – xω2 + xω2 + ω3 – ω4 – xω – ω2 + ω3 – 1 + ω2 + ω – ω3) = 0
⇒ x(x2 + ω3 – ω4 – ω2 + ω3 – 1 + ω2 + ω – ω3) = 0
⇒ x(x2 + ω3 – ω + ω – 1) = 0
⇒ x(x2 + 1 – ω + ω – 1) = 0 ( ω3 = 1)
⇒ x3 = 0
⇒ x = 0

(ix) \(\left|\begin{array}{ccc}
2 & 2 & x \\
-1 & x & 4 \\
1 & 1 & 1
\end{array}\right|\) = 0
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.4(9)
or, 10 + 10x – x2 – 8x – x – 8 = 0
or, x2 – 2x + x – 2 = 0
or, (x – 2) (x + 1) = 0
x = 2, x = -1

CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a)

(x) \(\left|\begin{array}{lll}
x & 1 & 3 \\
1 & x & 1 \\
3 & 6 & 3
\end{array}\right|\) = 0
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.4(10)
or, x(3x – 6) – 0 + 3(6 – 3x) = 0
or, 3x2 – 6x + 18 – 9x = 0
or, 3x2 – 15x + 18 = 0
or, x2 – 5x + 6 = 0
or, (x – 3) (x – 2) = 0
x = 3 or, x = 2

Question 5.
Evaluate the following
(i) \(\left|\begin{array}{ccc}
2 & 3 & 4 \\
1 & -1 & 3 \\
4 & 1 & 10
\end{array}\right|\)
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.5(1)

(ii) \(\left|\begin{array}{lll}
\boldsymbol{x} & \mathbf{1} & 2 \\
\boldsymbol{y} & \mathbf{3} & 1 \\
z & 2 & 2
\end{array}\right|\)
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.5(2)

(iii) \(\left|\begin{array}{ccc}
x & 1 & -1 \\
2 & y & 1 \\
3 & -1 & z
\end{array}\right|\)
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.5(3)
= x (yz + z – z + 1) – (2z – 2 – 3y – 3)
= xyz + x – 2z + 3y + 5
= xyz + x + 3y – 2z + 5

(iv) \(\left|\begin{array}{lll}
a & h & g \\
h & b & f \\
g & f & c
\end{array}\right|\)
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.5(4)
= a(bc – f2) – h (ch – fg) + g (hf – bg)
= abc – af2 – ch2 + fgh + fgh – bg2
= abc + 2fgh – af2 – bg2 – ch2

(v) \(\left|\begin{array}{lll}
a & h & g \\
h & b & f \\
g & f & c
\end{array}\right|\)
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.5(5)

(vi) \(\left|\begin{array}{ccc}
\sin ^2 \theta & \cos ^2 \theta & 1 \\
\cos ^2 \theta & \sin ^2 \theta & 1 \\
-10 & 12 & 2
\end{array}\right|\)
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.5(6)

(vii) \(\left|\begin{array}{ccc}
-1 & 3 & 2 \\
1 & 3 & 2 \\
1 & -3 & -1
\end{array}\right|\)
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.5(7)

(viii) \(\left|\begin{array}{ccc}
11 & 23 & 31 \\
12 & 19 & 14 \\
6 & 9 & 7
\end{array}\right|\)
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.5(8)

(ix) \(\left|\begin{array}{ccc}
37 & -3 & 11 \\
16 & 2 & 3 \\
5 & 3 & -2
\end{array}\right|\)
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.5(9)

(x) \(\left|\begin{array}{ccc}
2 & -3 & 4 \\
-4 & 2 & -3 \\
11 & -15 & 20
\end{array}\right|\)
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.5(10)
= 2(40 – 45) + 3(-80 + 33) + 4(60 – 22)
= -10 – 141 + 152 = -151 + 152 = 1

CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a)

Question 6.
Show that x = 1 is a solution of \(\left|\begin{array}{ccc}
x+1 & 3 & 5 \\
2 & x+2 & 5 \\
2 & 3 & x+4
\end{array}\right|\) = 0
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.6
or, (x + 9) {(x – 1)2} – 0
or, x = -9, 1
∴ x = 1 is a solution of the given equation.

Question 7.
Show that (a + 1) is a factor of \(\left|\begin{array}{ccc}
a+1 & 2 & 3 \\
1 & a+1 & 3 \\
3 & -6 & a+1
\end{array}\right|\) = 0
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.7
= (a+ 1) {(a + 1)2 + 18} – 2(a + 1 – 9) + 3(- 6 – 3a – 3)
= (a + 1) (a2 + 2a + 1 + 18) – 2(a – 8) + 3(- 9 – 3a)
= (a + 1) (a2 + 2a + 19) – 2a + 16 – 27 – 9a
= (a + 1) (a2 + 2a + 19) – 11a – 11
= (a + 1) (a2 + 2a + 19) – 11(a + 1)
= (a + 1) (a2 + 2a + 19 – 11)
= (a + 1) (a2 + 2a + 8)
∴ (a + 1) is a factor of the above determinant.

Question 8.
Show that \(\left|\begin{array}{ccc}
a_1 & b_1 & -c_1 \\
-a_2 & b_2 & c_2 \\
a_3 & b_3 & -c_3
\end{array}\right|=\left|\begin{array}{lll}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{array}\right|\)
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.8

Question 9.
Prove the following
(i) \(\left|\begin{array}{lll}
a & b & c \\
\boldsymbol{x} & y & z \\
\boldsymbol{p} & q & r
\end{array}\right|=\left|\begin{array}{lll}
\boldsymbol{y} & \boldsymbol{b} & \boldsymbol{q} \\
\boldsymbol{x} & \boldsymbol{a} & p \\
z & c & r
\end{array}\right|=\left|\begin{array}{lll}
\boldsymbol{x} & \boldsymbol{y} & z \\
\boldsymbol{p} & \boldsymbol{q} & r \\
a & b & c
\end{array}\right|\)
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.9(1)

(ii) \(\left|\begin{array}{ccc}
1+a & 1 & 1 \\
1 & 1+b & 1 \\
1 & 1 & 1+c
\end{array}\right|\) = abc \(\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.9(2)

CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a)

(iii) \(\left|\begin{array}{lll}
b+c & c+a & a+b \\
q+r & r+p & p+q \\
y+z & z+x & x+y
\end{array}\right|=2\left|\begin{array}{lll}
a & b & c \\
p & q & r \\
x & y & z
\end{array}\right|\)
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.9(3)

(iv) \(\left|\begin{array}{lll}
(a+1)(a+2) & a+2 & 1 \\
(a+2)(a+3) & a+3 & 1 \\
(a+3)(a+4) & a+4 & 1
\end{array}\right|\) = -2
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.9(4)

(v) \(\left|\begin{array}{ccc}
a+d & a+d+k & a+d+c \\
c & c+b & c \\
d & d+k & d+c
\end{array}\right|\) = abc
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.9(5)

(vi) \(\left|\begin{array}{ccc}
1 & 1 & 1 \\
b+c & c+a & c+a \\
b^2+c^2 & c^2+a^2 & a^2+b^2
\end{array}\right|\) = (b – c) (c – a) (a – b)
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.9(6)

(vii) \(\left|\begin{array}{lll}
a & a^2 & a^3 \\
b & b^2 & b^3 \\
c & c^2 & c^3
\end{array}\right|\) = abc (a – b) (b – c) (c – a)
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.9(7)

(viii) \(\left|\begin{array}{ccc}
\boldsymbol{b}+\boldsymbol{c} & \boldsymbol{a} & \boldsymbol{a} \\
\boldsymbol{b} & \boldsymbol{c}+\boldsymbol{a} & \boldsymbol{b} \\
\boldsymbol{c} & \boldsymbol{c} & \boldsymbol{a}+\boldsymbol{b}
\end{array}\right|\) = 4abc
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.9(8)
= (b + c – a) {(a + b) (c + a – b) – b (c – a – b)} + a (b – c – a) (c – a – b)
= (b + c – a)(ca + a2 – ab + bc + ab – b2 – bc + ab + b2) + a(bc – ab – b2 – c2 + ca + bc – ac + a2 + ab)
= (b + c – a) (a2 + ab + ca) + a (a2 – b2 – c2 + 2bc)
= a2b + ab2 + abc + ca2 + abc + c2a – a3 – a2b – ca2 + a3 – b2a – c2a + 2abc = 4abc

CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a)

(ix) \(\left|\begin{array}{ccc}
b^2+c^2 & a b & a c \\
a b & c^2+a^2 & b c \\
c a & c b & a^2+b^2
\end{array}\right|\) = 4a2b2c2
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.9(9)

(x) \(\left|\begin{array}{ccc}
a & b & c \\
a^2 & b^2 & c^2 \\
b c & c a & a b
\end{array}\right|\) = (b – c) (c – a) (a – b) (bc + ca + ab)
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.9(10)
= (a – b) (b – c) (c – a) – (- ab + c2) + c (a + b + c)
= (a – b) (b – c) (c – a) (ab – c2 + ca + bc + c2)
= (a – b) (b – c) (c – a) (ab + bc + ca)

(xi) \(\left|\begin{array}{ccc}
a-b-c & 2 a & 2 a \\
2 b & b-c-a & 2 b \\
2 c & 2 c & c-a-b
\end{array}\right|\) = (a + b+ c)3
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.9(11)

(xii) \(\left|\begin{array}{ccc}
(v+w)^2 & u^2 & u^2 \\
v^2 & (w+u)^2 & v^2 \\
w^2 & w^2 & (u+v)^2
\end{array}\right|\) = 2uvw (u + v + w)3
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.9(12)

Question 10.
Factorize the following
(i) \(\left|\begin{array}{ccc}
x+a & b & c \\
b & x+c & a \\
c & a & x+b
\end{array}\right|\)
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.10(1)
= (x + a + b + c) [(x + c – b) (x + b – a) – (a – c) (a – x – c)]
= (x + a + b + c) (x2 + xb – ax + cx +bc – ca – bx – b2 + ab – a2 + ax + ac + ac – cx – c2)
= (x + a + b + c) (x2 – a2 – b2 – c2 + ab + bc + ca)

CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a)

(ii) \(\left|\begin{array}{ccc}
a & b & c \\
b+c & c+a & a+b \\
a^2 & b^2 & c^2
\end{array}\right|\)
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.10(2)

(iii) \(\left|\begin{array}{ccc}
x & 2 & 3 \\
1 & x+1 & 3 \\
1 & 4 & x
\end{array}\right|\)
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.10(3)

Question 11.
Show that by eliminating α and from the equations.
ai α + bi β + ci = 0, i = 1, 2, 3 we get \(\left|\begin{array}{lll}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_2 & b_3 & c_3
\end{array}\right|\) = 0
Solution:
We have
a1 α + b1 β + c1 = 0    …..(1)
a2 α + b2 β + c2 = 0    …..(2)
a3 α + b3 β + c3 = 0    …..(3)
Solving (2) and (3) by cross-multiplication method we have
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.11

Question 12.
Prove the following:
(i) \(\left|\begin{array}{lll}
1 & b c & a(b+c) \\
1 & c a & b(c+a) \\
1 & a b & c(a+b)
\end{array}\right|\) = 0
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.12(1)

(ii) \(\left|\begin{array}{ccc}
x+4 & 2 x & 2 x \\
2 x & x+4 & 2 x \\
2 x & 2 x & x+4
\end{array}\right|\) = (5x + 4) (4- x)2
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.12(2)

(iii) \(\left|\begin{array}{l}
\sin \alpha \cos \alpha \cos (\alpha+\delta) \\
\sin \beta \cos \beta \cos (\beta+\delta) \\
\sin \alpha \cos \gamma \cos (\gamma+\delta)
\end{array}\right|\) = 0
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.12(3)

(iv) \(\left|\begin{array}{ccc}
1 & x & x^2 \\
x^2 & 1 & x \\
x & x^2 & 1
\end{array}\right|\) = (1 -x3)2
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.12(4)

Question 13.
Prove that the points (x1, y1), (x2, y2), (x3, y3) are collinear if \(\left|\begin{array}{lll}
x_1 & y_1 & 1 \\
x_2 & y_2 & 1 \\
x_3 & y_3 & 1
\end{array}\right|\) = 0
Solution:
From geometry, we know that, if the points A, B, C, are collinear, then the area of the triangle ABC with vertices (x1, y1), (x2, y2) and (x3, y3) is zero.
\(\left|\begin{array}{lll}
x_1 & y_1 & 1 \\
x_2 & y_2 & 1 \\
x_3 & y_3 & 1
\end{array}\right|\) = 0

CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a)

Question 14.
If A + B + C = π, prove that \(\left|\begin{array}{lll}
\sin ^2 A & \cot A & 1 \\
\sin ^2 B & \cot B & 1 \\
\sin ^2 C & \cot C & 1
\end{array}\right|\) = 0
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.14

Question 15.
Eliminate x, y, z from a = \(\frac{x}{y-z}\), b = \(\frac{y}{z-x}\), c = \(\frac{z}{x-y}\)
Solution:
We have
a = \(\frac{x}{y-z}\), b = \(\frac{y}{z-x}\), c = \(\frac{z}{x-y}\)
ay – az – x = 0, bz – bx – y = 0, cx – cy – z = 0
x – ay + az = 0
bx + y – bz = 0
cx – cy – z = 0
Now eliminating x, y, z from the above equations we have,
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.15
or, – 1 – bc + a(-b + bc) + a(-bc – c) = 0
or, – 1 – bc – ab + abc – abc – ac = 0
or, ab + bc + ca + 1 = 0

Question 16.
Given the equations
x = cy + bz, y = az + ex and z = bx + ay where x, y and z are not all zero, prove that a2 + b2 + c2 + 2abc = 1 by determinant method.
Solution:
x = cy + bz, y = az + cx and z = bx + ay
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.16
or, 1 – a2 + c(-c – ab) – b(ca + b) = 0
or, 1 – a2 – c2 – abc – abc – b2 = 0
or, a2 + b2 + c2 + 2abc = 1

Question 17.
If ax + hy + g = 0, hx + by +f = 0 and gx + fy + c = λ, find the value of λ, in the form of a determinant.
Solution:
CHSE Odisha Class 12 Math Solutions Chapter 5 Determinants Ex 5(a) Q.17

Leave a Comment