Odisha State Board Elements of Mathematics Class 12 Solutions CHSE Odisha Chapter 9 Integration Ex 9(l) Textbook Exercise questions and Answers.

## CHSE Odisha Class 12 Math Solutions Chapter 9 Integration Exercise 9(l)

Question 1.

\(\int_0^{\frac{\pi}{2}}\)sin^{10} θ dθ

Solution:

\(\int_0^{\frac{\pi}{2}}\)sin^{10} θ dθ = \(\frac{9}{10} \cdot \frac{7}{8} \cdot \frac{5}{6} \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}\) = \(\frac{405 \pi}{7680}\)

Question 2.

\(\int_0^{\frac{\pi}{2}}\)cos^{12} θ dθ

Solution:

\(\int_0^{\frac{\pi}{2}}\)cos^{12} θ dθ = \(\frac{11}{12} \cdot \frac{9}{10} \cdot \frac{7}{8} \cdot \frac{5}{6} \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}\) = \(\frac{4455 \pi}{92160}\)

Question 3.

\(\int_0^{\frac{\pi}{2}}\)sin^{11} θ dθ

Solution:

\(\int_0^{\frac{\pi}{2}}\)sin^{11} θ dθ = \(\frac{10}{11} \cdot \frac{8}{9} \cdot \frac{6}{7} \cdot \frac{4}{5} \cdot \frac{2}{3}\) = \(\frac{3840}{4455}\)

Question 4.

\(\int_0^{\frac{\pi}{2}}\)cos^{9} θ dθ

Solution:

\(\int_0^{\frac{\pi}{2}}\)cos^{9} θ dθ = \(\frac{8}{9} \cdot \frac{6}{7} \cdot \frac{4}{5} \cdot \frac{2}{3}\) = \(\frac{384}{405}\)

Question 5.

\(\int_0^1 \frac{x^7}{\sqrt{1-x^2}}\) dx

Solution:

Question 6.

\(\int_0^1 \frac{x^5\left(4-x^2\right)}{\sqrt{1-x^2}}\) dx

Solution:

Question 7.

\(\int_0^a x^3\left(a^2-x^2\right)^{\frac{5}{2}}\) dx

Solution:

Question 8.

\(\int_0^1 x^5 \sqrt{\frac{1+x^2}{1-x^2}}\) dx

Solution:

Question 9.

\(\int_0^{\infty} \frac{x^2}{\left(1+x^6\right)^n}\) dx

Solution:

Question 10.

\(\int_0^\pi\)sin^{8} θ dθ

Solution: