Odisha State Board BSE Odisha 8th Class Maths Solutions Geometry Chapter 5 ପରିମିତି Ex 5(e) Textbook Exercise Questions and Answers.
BSE Odisha Class 8 Maths Solutions Geometry Chapter 5 ପରିମିତି Ex 5(e)
Question 1.
ନିମ୍ନସ୍ଥ ସାମାନ୍ତରିକକ୍ଷେତ୍ରର କ୍ଷେତ୍ରଫଳ ନିଶ୍ଚୟ କର, ଯେଉଁ ସାମାନ୍ତରିକକ୍ଷେତ୍ରର
(i) ଗୋଟିଏ ବାହୁର ଦୈର୍ଘ୍ୟ 4 ଡେସି ମି. ଓ ସେହି ବାହୁପ୍ରତି ଅଙ୍କିତ ଉଚ୍ଚତା 1 ଡେସି ମି. 8 ସେ.ମି. ।
(ii) ଗୋଟିଏ ବାହୁର ଦୈର୍ଘ୍ୟ 2 ମି. 55 ସେ.ମି., ସେହି ବାହୁପ୍ରତି ଅଙ୍କିତ ଉଚ୍ଚତା 1 ମି. 8 ସେ.ମି. ।
(iii) ଗୋଟିଏ କଣ୍ଠର ଦୈର୍ଘ୍ୟ 12 ମି. ଓ ଏହାର ଏକ ପାର୍ଶ୍ଵ ଗୋଟିଏ କୌଣିକ ବିନ୍ଦୁରୁ ଏହାପ୍ରତି ଅଙ୍କିତ ଲମ୍ବର ଦୈର୍ଘ୍ୟ 4 ମି. ।
Solution:
(i) ସାମାନ୍ତରିକକ୍ଷେତ୍ରର ଗୋଟିଏ ବାହୁର ଦୈର୍ଘ୍ୟ = 4 ଡେସିମି. = 40 ସେ.ମି.
ସେହି ବାହୁପ୍ରତି ଅଙ୍କିତ ଉଚ୍ଚତା = 1 ଡେସିମି. 8 ସେ.ମି. = 18 ସେ.ମି.
∴ ସାମାନ୍ତରିକକ୍ଷେତ୍ରର କ୍ଷେତ୍ରଫଳ = ବାହୁର ଦୈର୍ଘ୍ୟ × ସେହି ବାହୁପ୍ରତି ଅଙ୍କିତ ଉଚ୍ଚତା = 40 × 18 = 720 ବଗ ସେ.ମି.
(ii) ସାମାନ୍ତରିକକ୍ଷେତ୍ରର ଗୋଟିଏ ବାହୁର ଦୈର୍ଘ୍ୟ = 2 ମି. 55 ସେ.ମି. = 255 ସେ.ମି.
ଓ ସେହି ବାହୁପ୍ରତି ଅଙ୍କିତ ଉଚ୍ଚତା = 1ମି. 4 ସେ.ମି. = 104 ସେ.ମି.
∴ ସାମାନ୍ତରିକକ୍ଷେତ୍ରର କ୍ଷେତ୍ରଫଳ = ବାହୁର ଦୈର୍ଘ୍ୟ × ସେହି ବାହୁପ୍ରତି ଅଙ୍କିତ ଉଚ୍ଚତା
= 255 × 104 = 26520 ବଗ ସେ.ମି.
(iii) ସାମାନ୍ତରିକକ୍ଷେତ୍ରର କର୍ଣ୍ଣର ଦୈର୍ଘ୍ୟ = 12 ମି.
ଓ ବିପରୀତ ବିନ୍ଦୁରୁ ଏହାପ୍ରତି ଅଙ୍କିତ ଲମ୍ବର ଦୈର୍ଘ୍ୟ = 4 ମି.
∴ ସାମାନ୍ତରିକକ୍ଷେତ୍ରର କ୍ଷେତ୍ରଫଳ = ଗୋଟିଏ କର୍ଣ୍ଣର ଦୈର୍ଘ୍ୟ ×ଏହି କଣ୍ଠ ଉପରେ ବିପରୀତ କୌଣିକ ବିନ୍ଦୁରୁ ଅଙ୍କିତ ଲମ୍ବର ଦୈର୍ଘ୍ୟ = 12 × 4 = 48 ବଗ ମି.
Question 2.
ଗୋଟିଏ ସାମାନ୍ତରିକକ୍ଷେତ୍ରର ଦୁଇଟି ସନ୍ନିହିତ ବାହୁ ଓ ଏକ କର୍ପୂର ଦୈର୍ଘ୍ୟ ଯଥାକ୍ରମେ 26 ମି. ଓ 28 ମି. ଏବଂ 30 ମି. ହେଲେ, ତାହାର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କର ।
Solution:
ABCD ଦତ୍ତ ସାମାନ୍ତରିକକ୍ଷେତ୍ରରେ AB = 26 ମି., BC = 28 ମି. ଓ AC = 30 ମି.
ଅର୍ଥାତ୍ ABC ତ୍ରିଭୁଜର a = 26 ମି., b = 28. ମି. c = 30 ମି.
Question 3.
ଗୋଟିଏ ସାମାନ୍ତରିକକ୍ଷେତ୍ରର କର୍ତ୍ତୃଦ୍ଵୟର ଦୈର୍ଘ୍ୟ 204 ସେ.ମି. ଓ 252 ସେ.ମି. ଏବଂ ଗୋଟିଏ ବାହୁର ଦୈର୍ଘ୍ୟ 60 ସେ.ମି. । ଏହାର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କର ।
Solution:
ABCD ସାମାନ୍ତରିକକ୍ଷେତ୍ରର କର୍ଣଦ୍ଵୟ AC = 252 ସେ.ମି. ଓ BD = 204 ସେ.ମି.
⇒ OC = \(\frac { 252 }{ 2 }\) = 126 ସେ.ମି. ଏବଂ OB = \(\frac { 204 }{ 2 }\) = 102 ସେ.ମି.
∴ △ OBC ର ବାହୁତ୍ରୟର ଦେଶ୍ୟ 102 ସେ.ମି., 126 ସେ.ମି. ଓ 60 ସେ.ମି. |
∴ △ OBC ର ଆଦିପରିପାପ = \(\frac { 102+126+60 }{ 2 }\) = \(\frac { 288 }{ 2 }\) = 144 ସେ.ମି.
∴ ABCD ସାମାନ୍ତରିକକ୍ଷେତ୍ରର କ୍ଷେତ୍ରଫଳ
= 4 × △ OBC କ୍ଷେତ୍ରଫଳ = 4 × 3024 = 12096 ବଗ ସେ.ମି. |
Question 4.
ଗୋଟିଏ ସାମାନ୍ତରିକକ୍ଷେତ୍ରର କର୍ଣ୍ଣଦ୍ୱୟର ଦୈର୍ଘ୍ୟ ଯଥାକ୍ରମେ 34 ସେ.ମି. ଓ 50 ସେ.ମି. ଏବଂ ଏହାର ଦୈର୍ଘ୍ୟ 26 ସେ.ମି. ହେଲେ, ସେହି ବାହୁ ଓ ତାହାର ବିପରୀତ ବାହୁ ମଧ୍ୟରେ ଲମ୍ବ ଦୂରତା ନିର୍ଣ୍ଣୟ କର ।
Solution:
ABCD ସାମାନ୍ତରିଲ ଚିତ୍ରରେ, AC = 34 ସେ.ମି., BD = 50 ସେ.ମି. ଏବଂ BC = 26 ସେ.ମି.
∴ OB = \(\frac { BD }{ 2 }\) = 25 ସେ.ମି., OC = \(\frac { AC }{ 2 }\) = 17 ସେ.ମି., BC = 26 ସେ.ମି.
△ OBC ର ଅଦିପରିସମା (s) = \(\frac { 25+17+26 }{ 2 }\) = \(\frac { 68 }{ 2 }\) = 34 ସେ.ମି.
ABCD ସାମାନ୍ତରିକକ୍ଷେତ୍ରର କ୍ଷେତ୍ରଫଳ = 4 × △ OBC ର କ୍ଷେତ୍ରଫଳ = 4 × 204 = 816 ସେ.ମି.
କିନ୍ତୁ କ୍ଷେତ୍ରଫଳ = ଭୂମି × ଇଲ୍ତ ଭୂମିର ବିପରୀତ ଭୁମି ମଧ୍ୟରେ ବୃଣତା (ବୃଣତା) = BC × AM
⇒ 816 = 26 × AM ⇒ AM = \(\frac { 816 }{ 26 }\) = 31\(\frac { 5 }{ 13 }\) ସେ.ମି. = 31.38 ସେ.ମି.
∴ ବୃଣତା = 31.38 ସେ.ମି. |
Question 5.
ଗୋଟିଏ ସାମାନ୍ତରିକକ୍ଷେତ୍ରର ଦୁଇ ସନ୍ନିହିତ ବାହୁ ଓ ଗୋଟିଏ କର୍ଣ୍ଣର ଦୈର୍ଘ୍ୟ ଯଥାକ୍ରମେ 20 ସେ.ମି., 42 ସେ.ମି. ଓ 34 ସେ.ମି. ହେଲେ, ଉକ୍ତ କ୍ଷେତ୍ରର ବୃହତ୍ତମ ବାହୁପ୍ରତି ଉଚ୍ଚତା ନିର୍ଣ୍ଣୟ କର ।
Solution:
ABCD ସାମାନ୍ତରିକକ୍ଷେତ୍ରର AB, BC ଏବଂ AC କଣ୍ଠ ଯଥାକ୍ରମେ 20 ସେ.ମି. 42 ସେ.ମି. ଏବଂ 34 ସେ.ମି. ।
∴ △ABCର ଅର୍ଥପରିସୀମା (s) = \(\frac { 20+42+34 }{ 2 }\) = \(\frac { 96 }{ 2 }\) = 48 ସେ.ମି.
∴ ବିପରୀତ କୌଣିକ ବିନ୍ଦୁରୁ ବୃହତ୍ତମ ବାହୁ ଉପରେ ଲମ୍ବର ଦୈର୍ଘ୍ୟ 16 ସେ.ମି. ।
Question 6.
କୌଣସି ସାମାନ୍ତରିକକ୍ଷେତ୍ରର ଗୋଟିଏ ବାହୁର ଦୈର୍ଘ୍ୟ 75 ମିଟର ଏବଂ ଏହି ବାହୁ ଉପରେ କଣ୍ଠଦ୍ଵୟର ଛେଦବିନ୍ଦୁରୁ ଅଙ୍କିତ ଲମ୍ବର ଦୈର୍ଘ୍ୟ 0.8 ମିଟର ହେଲେ, କ୍ଷେତ୍ରଟିର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କର ।
Solution:
ସାମାନ୍ତରିକକ୍ଷେତ୍ରର ଗୋଟିଏ ବାହୁର ଦୈର୍ଘ୍ୟ = 7.5 ମି.
କର୍ଣ୍ଣଦ୍ଵୟର ଛେଦବିନ୍ଦୁରୁ ଅଙ୍କିତ ଲମ୍ବର ଦୈର୍ଘ୍ୟ= 0.8 ମି.
∴ ସାମାନ୍ତରିକକ୍ଷେତ୍ରର କ୍ଷେତ୍ରଫଳ
= 2 × ଗୋଟିଏ ବାହୁର ଦୈର୍ଘ୍ୟ × କର୍ଣ୍ଣଦ୍ଵୟର ଛେଦବିନ୍ଦୁରୁ ସେହି ବାହୁପ୍ରତି ଅଙ୍କିତ ଲମ୍ବର ଦୈର୍ଘ୍ୟ
= 2 × 7.5 × 0.8 = 12 ଜଣ ମି. |
Question 7.
63 ମିଟର ଭୂମି ଓ 36 ମିଟର ଉଚ୍ଚତା ବିଶିଷ୍ଟ ଏକ ତ୍ରିଭୁଜର କ୍ଷେତ୍ରଫଳ ସହ ଏକ ସାମାନ୍ତରିକ୍ଷେତ୍ରର କ୍ଷେତ୍ରଫଳ ସମାନ । ସାମାନ୍ତରିକକ୍ଷେତ୍ରର ଭୂମିର ଦୈର୍ଘ୍ୟ 42 ମିଟର ହେଲେ, ସାମାନ୍ତରିକକ୍ଷେତ୍ରର ଉଚ୍ଚତା ନିର୍ଣ୍ଣୟ କର ।
Solution:
ଏକ ତ୍ରିଭୁଜର ଭୂମିର ଦୈର୍ଘ୍ୟ = 63 ମି. ଓ ଉଚ୍ଚତା = 36 ମି.
ତ୍ରିଭୁଜର କ୍ଷେତ୍ରଫଳ = \(\frac { 1 }{ 2 }\) ଭୂମି × ଉଚ୍ଚତା = \(\frac { 1 }{ 2 }\) × 63 × 36 = 1134 ବର୍ଗ ମି.
ସାମାନ୍ତରିକକ୍ଷେତ୍ରରେ ଭୂମିର ଦୈର୍ଘ୍ୟ = 42 ମି.
ମନେକର ସାମାନ୍ତରିକକ୍ଷେତ୍ରର ଉଚ୍ଚତା = x ମି.
ସାମାନ୍ତରିକକ୍ଷେତ୍ରରେ କ୍ଷେତ୍ରଫଳ = ବାହୁର ଦୈର୍ଘ୍ୟ × ଉଚ୍ଚତା = 42x ବର୍ଗ ମି.
ପ୍ରଶ୍ନନୁସାରେ 42x = 1134 ⇒ x = \(\frac { 1134 }{ 42 }\) = 27 ମି.
∴ ସାମାନ୍ତରିକକ୍ଷେତ୍ରର ଉଚ୍ଚତା 27 ମି. |