BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(f)

Odisha State Board BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(f) Textbook Exercise Questions and Answers.

BSE Odisha Class 8 Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(f)

Question 1.
ଘନମୂଳ ନିର୍ଣ୍ଣୟ କର :
(i) 343 (ii) 1000 (iii) 74088 (iv) 157464 (v) 8,000,000
ସମାଧାନ :
(i) \(\sqrt[3]{343}=\sqrt[3]{7 \times 7 \times 7}=7\)

(ii) \(\sqrt[3]{1000}=\sqrt[3]{2 \times 2 \times 2 \times 5 \times 5 \times 5}=2 \times 5=10\)

(iii) \(\sqrt[3]{74088}=\sqrt[3]{2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 7 \times 7 \times 7}=2 \times 3 \times 7=42\)

(iv) \(\sqrt[3]{157464}=\sqrt[3]{2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3}=2 \times 3 \times 3 \times 3=54\)

(v) \(\sqrt[3]{8000000}=\sqrt[3]{2 \times 2 \times 2 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10}=2 \times 10 \times 10=200\)

BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(f)

Question 2.
2744 କୁ କେଉଁ କ୍ଷୁଦ୍ରତମ ସଂଖ୍ୟାରେ ଗୁଣିଲେ, ଗୁଣଫଳ ଏକ ପୂର୍ବ ଘନସଂଖ୍ୟା ହେବ ? ଉକ୍ତ ଘନସଂଖ୍ୟାର ଘନମୂଳ ନିର୍ଣ୍ଣୟ କର ।
ସମାଧାନ :
2744 = 2 × 2 × 2 × 7 × 7 × 7 = 2³ × 7³ = (2 × 7)³
2744କୁ 1 ଦ୍ଵାରା ଗୁଣିଲେ ଗୁଣଫଳ ଏକ ଘନସଂଖ୍ୟା ହେବ ଓ ଉକ୍ତ ଘନସଂଖ୍ୟାର ଘନମୂଳ 2 × 7 = 14 ହେବ ।

Question 3.
5488 କୁ କେଉଁ କ୍ଷୁଦ୍ରତମ ସଂଖ୍ୟାଦ୍ଵାରା ଭାଗକଲେ, ଭାଗଫଳ ଏକ ପୂର୍ଣ୍ଣ ଘନସଂଖ୍ୟା ହେବ ? ଉକ୍ତ ଭାଗଫଳର ଘନମୂଳ ନିର୍ଣ୍ଣୟ କର ।
ସମାଧାନ :
5488 = 2 × 2 × 2 × 2 × 7 × 7 × 7 = (2)³ × (7)³ × 2 = (2 × 7)³ × 2
5488କୁ 2 ଦ୍ବାରା ଭାଗକଲେ ଭାଗଫଳ ଏକ ଘନସଂଖ୍ୟା ହେବ ଉକ୍ତ ଭାଗଫଳର ଘନମୂଳ 2 × 7 = 14 ହେବ ।

BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(f)

Question 4.
ଏକ ସମଘନର ଆୟତନ 512 ଘନମିଟର ହେଲେ, ଏହାର ଭୂମିର କ୍ଷେତ୍ରଫଳ କେତେ ହେବ ?
ସମାଧାନ :
ଏକ ସମଘନର ଆୟତନ = 512 ଘନମିଟର ।
ଏହାର ପ୍ରତ୍ୟେକ ବାହୁର ଦୈର୍ଘ୍ୟ = \(\sqrt[3]{512}\) ମି. = \(\sqrt[3]{2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2}\) = 2 × 2 × 2 = 8 ମି.
ଭୂମିର କ୍ଷେତ୍ରଫଳ = (ବାହୁର ଦୈର୍ଘ୍ୟ)² = (8 ମି)² = 64 ବର୍ଗମିଟର ।
ସମଘନର ଭୂମିର କ୍ଷେତ୍ରଫଳ 64 ବର୍ଗମିଟର ।

Question 5.
53240 କୁ କେଉଁ କ୍ଷୁଦ୍ରତମ ସଂଖ୍ୟାରେ ଭାଗକଲେ, ଭାଗଫଳ ଏକ ପୂର୍ଣ୍ଣ ଘନସଂଖ୍ୟା ହେବ ଏବଂ କେଉଁ କ୍ଷୁଦ୍ରତମ ସଂଖ୍ୟାଦ୍ଵାରା ଗୁଣିଲେ ଗୁଣଫଳ ଏକ ପୂର୍ଣ ଘନ ସଂଖ୍ୟା ହେବ ?
ସମାଧାନ :
53240 = 2 × 2 × 2 × 11 × 11 × 11 × 5 = 2³ × 11³ × 5
ସଂଖ୍ୟାଟିକୁ 5 ଦ୍ବାରା ଭାଗକଲେ ଭାଗଫଳ ଏକ ପୂର୍ଣ୍ଣ ଘନରାଶି ହେବ । ସଂଖ୍ୟାଟିକୁ 25 ଦ୍ଵାରା ଗୁଣନକଲେ ଗୁଣଫଳ ଏକ ଘନସଂଖ୍ୟା ହେବ ।

BSE Odisha 8th Class Maths Solutions Geometry Chapter 5 ପରିମିତି Ex 5(c)

Odisha State Board BSE Odisha 8th Class Maths Solutions Geometry Chapter 5 ପରିମିତି Ex 5(c) Textbook Exercise Questions and Answers.

BSE Odisha Class 8 Maths Solutions Geometry Chapter 5 ପରିମିତି Ex 5(c)

Question 1.
ଗୋଟିଏ ବର୍ଗକ୍ଷେତ୍ରର କ୍ଷେତ୍ରଫଳ 900 ବର୍ଗମିଟର ହେଲେ, ଏହାର ପରିସୀମା ନିର୍ଣ୍ଣୟ କର ।
Solution:
ମନେକର ବର୍ଗାକାରକ୍ଷେତ୍ରର ବାହୁର ଦୈର୍ଘ୍ୟ a ମିଟର ।
∴ ବର୍ଗାକାରକ୍ଷେତ୍ରର କ୍ଷେତ୍ରଫଳ = a2 ବର୍ଗମିଟର ।
ପ୍ରଶ୍ନନୁସାରେ, a2 = 900 ⇒ a= √900 = 30 ମି.
∴ ବର୍ଗକ୍ଷେତ୍ରର ପରିସୀମା = 4 × a = 4 × 30 = 120 ମିଟର ।

Question 2.
ଗୋଟିଏ ଆୟତାକାର ଘାସପଡ଼ିଆର ଦୈର୍ଘ୍ୟ, ଏହାର ପ୍ରସ୍ଥର ଦୁଇଗୁଣ । ଏହାର କ୍ଷେତ୍ରଫଳ 800 ବର୍ଗମିଟର ହେଲେ, ଦୈର୍ଘ୍ୟ ଓ ପ୍ରସ୍ଥ ନିର୍ଣ୍ଣୟ କର ।
Solution:
ମନେକର ଆୟତକ୍ଷେତ୍ରର ପ୍ରସ୍ଥ = x ମି.
∴ ଦୈର୍ଘ୍ୟ 2x ମି.
ପ୍ରଶ୍ନନୁସାରେ, ଆୟତକ୍ଷେତ୍ରର କ୍ଷେତ୍ରଫଳ = 800 ବ.ମି.
⇒ ଦୈର୍ଘ୍ୟ × ପ୍ରସ୍ଥ = 800 ବ.ମି. (∵ଆୟତକ୍ଷେତ୍ରର କ୍ଷେତ୍ରଫଳ = ଦୈର୍ଘ୍ୟ × ପ୍ରସ୍ଥ)
⇒ 2x × x = 800
→ x2 = 400 = x = 20 ମି.
ପ୍ରସ୍ଥ = x = 20 ଏବଂ ଦୈର୍ଘ୍ୟ = 2x = 2 × 20 = 40 ମିଟର ।
∴ ଆୟତକ୍ଷେତ୍ରର ଦୈର୍ଘ୍ୟ 40 ମିଟର ଓ ପ୍ରସ୍ଥ 20 ମିଟର ।

BSE Odisha 8th Class Maths Solutions Geometry Chapter 5 ପରିମିତି Ex 5(c)

Question 3.
ଗୋଟିଏ ବର୍ଗାକାରକ୍ଷେତ୍ରର କ୍ଷେତ୍ରଫଳ 139876 ବର୍ଗମିଟର । ଏହାର ଚାରିପାଖରେ ବାଡ଼ଦେବାରେ ପ୍ରତି ମିଟରକୁ ଟ. 15.00 ହିସାବରେ କେତେ ଖର୍ଚ୍ଚ ହେବ ?
Solution:
ବର୍ଗାକାରକ୍ଷେତ୍ରର କ୍ଷେତ୍ରଫଳ = 139876 ବ.ମି.
∴ ବର୍ଗାକାରକ୍ଷେତ୍ରର ବାହୁ = \(\sqrt{139876}\) = 374 ମି.
∴ ବର୍ଗକ୍ଷେତ୍ରର ପରିସୀମା = 4 × ବାହୁ = 4 × 374 = 1496 ମିଟର ।
ପ୍ରତି ମିଟରକୁ ବାଡ଼ଦେବା ଖର୍ଚ୍ଚ 15 ଟଙ୍କା ହେଲେ,
ବର୍ଗାକାରକ୍ଷେତ୍ରଟିର ଚାରିପାଖରେ ବାଡ଼ଦେବା ଖର୍ଚ୍ଚ
= 1496 × 15 = 22,440 ଖର୍ଚ୍ଚ |
∴ ବର୍ଗାକାରକ୍ଷେତ୍ରର ଚାରିପାଖରେ ବାଡ଼ଦେବାରେ 22440 ଟଙ୍କା ଖର୍ଚ୍ଚ ହେବ ।

Question 4.
ଗୋଟିଏ ବର୍ଗାକାର ବଗିଚାର ଦୈର୍ଘ୍ୟ 30 ମିଟର । ତାହାର ଭିତର ସୀମାର ଚାରିଧାରକୁ ଲାଗି 1 ମିଟର ଚଉଡ଼ାର ଏକ ରାସ୍ତା ନିର୍ମାଣ କରାଯାଇଛି ।
(i) ରାସ୍ତାର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କର ।
(ii) ରାସ୍ତାଟି ତିଆରିପାଇଁ ବର୍ଗମିଟରକୁ ଟ. 240 ପଇସା ହିସାବରେ କେତେ ଖର୍ଚ୍ଚ ହେବ ନିର୍ଣ୍ଣୟ କର ।
Solution:
ABCD ବର୍ଗାକାର ବଗିଚାର ବାହୁର ଦୈର୍ଘ୍ୟ = AB = 30 ମି.
EFGH ବର୍ଗାକାରକ୍ଷେତ୍ରର ବାହୁର ଦୈର୍ଘ୍ୟ = 30 – (1 × 2) = 28 ମି.
(i) ରାସ୍ତାର କ୍ଷେତ୍ରଫଳ = ABCD ବର୍ଗାକାରକ୍ଷେତ୍ରର କ୍ଷେତ୍ରଫଳ – EFGH ବର୍ଗାକାରକ୍ଷେତ୍ରର କ୍ଷେତ୍ରଫଳ
= (30)2 – (28)2 = (30 + 28) (30 – 28)
= 58 × 2 = 116 ଚଟା.ମି.
BSE Odisha 8th Class Maths Solutions Geometry Chapter 5 Img 20
(ii) 1 ବର୍ଗମିଟରକୁ ଟ. 2.40 ପଇସା ହିସାବରେ
116 ବର୍ଗମିଟରକୁ ଖର୍ଚ୍ଚ ହେବ
= (116 × 2. 40) ଖର୍ଚ୍ଚ = 278.40 ଖର୍ଚ୍ଚ
∴ ରାସ୍ତାଟି ତିଆରି ପାଇଁ 278.40 ଟଙ୍କା ଖର୍ଚ୍ଚ ହେଲା ।

Question 5.
5 ମି. × 3 ମି. ପାପର ଘର ମାଣକୁ ଗାଲିଲ କିଛିଳତାକୁ ଦେଲେ, 60 ସେ.ମି. × 50 ସେ.ମି. ପାପର କେତେ ଖଣ୍ଡ ଟାଇଲ ଆବଶ୍ୟକ ହେବ ନିର୍ଣ୍ଣୟ କର ।
Solution:
ଘର ଚଟାଣର କ୍ଷେତ୍ରଫଳ = 5 ମି. × 3 ମି.
= (5 × 100) ସେ.ମି. × (3 × 100) ସେ.ମି. = 150000 ବଶ ସେ.ମି.
ଗୋଟିଏ ଗାଲଲଭ ଯେତ୍ରପଲ = 60 ସେ.ମି. × 50 ସେ.ମି. = 3000 ବଶ ସେ.ମି.
ଟାଇଲର ସଂଖ୍ୟା = \(\frac { ଘର ଚଟାଣର କ୍ଷେତ୍ରଫଳ }{ ଗାଲିଲ କିଛିଳତାକୁ }\) = \(\frac { 150000 }{ 3000 }\) = 50 ଖର୍ଚ୍ଚ
∴ 50 ଖଣ୍ଡ ଟାଇଲ ଆବଶ୍ୟକ ହେବ |

Question 6.
ରାମ କିଣିଥିବା ଖଣ୍ଡିଏ ଜମିର ଆକାର 20 ମି. × 24 ମି. । ଶ୍ୟାମ କିଣିଥିବା ଖଣ୍ଡିଏ ଜମିର ଆକାର 22 ମି. × 22 ମି. । ଏହି ଦୁଇଖଣ୍ଡ ଜମିର (i) ପରିସୀମାର ଅନ୍ତର (ii) କ୍ଷେତ୍ରଫଳର ଅନ୍ତର ନିର୍ଣ୍ଣୟ କର ।
Solution:
ରାମ କିଣିଥିବା ଜମିର ଦୈର୍ଘ୍ୟ ଏବଂ ପ୍ରସ୍ଥ ଯଥାକ୍ରମେ 24 ମି. 20 ମି. ।
∴ପରିସୀମା = 2 (ଦୈର୍ଘ୍ୟ + ପ୍ରସ୍ଥ) = 2(24 + 20) = 88 ମିଟର
ଏବଂ କ୍ଷେତ୍ରଫଳ = ଦୈର୍ଘ୍ୟ × ପ୍ରସ୍ଥ = 24 × 20 = 480 ବଗମିଟର |
ଶ୍ୟାମ କିଣିଥିବା କାମିର ଦୈର୍ଘ୍ୟ = 22 ମି. ଏବଂ ପ୍ରସ୍ଥ = 22 ମି. | ଅର୍ଥାତ୍ ଜମିଟି ବର୍ଗାକାରକ୍ଷେତ୍ର ।
∴କ୍ଷେତ୍ରଟିର ପରିସୀମା = 4 × ବାହୁର ଦୈର୍ଘ୍ୟ = 4 × 22 = 88 ମିଟର |
କ୍ଷେତ୍ରଟିର କ୍ଷେତ୍ରଫଳ = (ବାହୁର ଦୈର୍ଘ୍ୟ)2 = (22)2 = 484 ବର୍ଗମିଟର ।
∴ ରାମ ଓ ଶ୍ୟାମ କିଣିଥିବା ଜମିର ପରିସୀମା ସମାନ ଅର୍ଥାତ୍ ଅନ୍ତର 0।
ଜମିର କ୍ଷେତ୍ରଫଳର ଅନ୍ତର = 484 – 480 = 4 ଦ.ମି. |

BSE Odisha 8th Class Maths Solutions Geometry Chapter 5 ପରିମିତି Ex 5(c)

Question 7.
ଗୋଟିଏ ଆୟତାକାରକ୍ଷେତ୍ରର ଦୈର୍ଘ୍ୟ 125 ମିଟର ଓ ପ୍ରସ୍ଥ 60 ମିଟର । ଏହାର ଭିତର ପାଖରେ ଦୈର୍ଘ୍ୟର ଗୋଟିଏ ଧାରକୁ ଓ ପ୍ରସ୍ଥର ଦୁଇ ଧାରକୁ ଏହିପରି ତିନି ଧାରକୁ ଲାଗି 2 ମିଟର ଚଉଡ଼ାର ଏକ ରାସ୍ତା ଅଛି । ରାସ୍ତାଟିର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କର ।
Solution:
ABCD ଆୟତାକାରକ୍ଷେତ୍ରର ଦୈର୍ଘ୍ୟ = AB = 125 ମି. ଓ ପ୍ରସ୍ଥ = AD = 60 ମି.
∴ କ୍ଷେତ୍ରଟିର ଭିତର ପାଖରେ ରାସ୍ତାଟି ଅଛି ।
EFGH ଆୟତାକାରକ୍ଷେତ୍ରଟିର ଦୈର୍ଘ୍ୟ = EF = (125 – 2 × 2) = 121 ମିଟର
ଓ ପ୍ରସ୍ଥ = EH = 60 – 2 = 58 ମିଟର
BSE Odisha 8th Class Maths Solutions Geometry Chapter 5 Img 21
∴ ରାମାର ଯେତ୍ରଫଲ = ABCD ଆୟତାକାରକ୍ଷେତ୍ରର କ୍ଷେତ୍ରଫଳ – EFGH
ଆୟତାକାରକ୍ଷେତ୍ରର କ୍ଷେତ୍ରଫଳ = (AB × AD) – (EF × EH)
= (125 × 60) ଦ.ମି. – (121 × 58) ଦ.ମି. = (7500 – 7018) ଦ.ମି. = 482 ଦ.ମି. |

Question 8.
ଗୋଟିଏ ଆୟତାକାର ପଡ଼ିଆର ମଧ୍ୟଭାଗରେ 2 ମିଟର ଚଉଡ଼ାର ଦୁଇଟି ରାସ୍ତା ପରସ୍ପରକୁ ସମକୋଣରେ ଛେଦକରନ୍ତି, ଯେପରିକି ପ୍ରତ୍ୟେକ ରାସ୍ତା ଆୟତାକାର ପଡ଼ିଆର ଗୋଟିଏ ବାହୁ ସହିତ ସମାନ୍ତର । ଆୟତାକାର ପଡ଼ିଆର ଦୈର୍ଘ୍ୟ 72 ମି. ଓ ପ୍ରସ୍ଥ 48 ମି. ହେଲେ, ରାସ୍ତାର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କର ।
Solution:
PORS ଏବଂ EFGH ଦୁଇଗୋଟି ରାସ୍ତା କ୍ଷେତ୍ରଟିର ମଧ୍ୟଭାଗରେ ପରସ୍ପରକୁ ଛେଦକରନ୍ତି ।
ABCD ଆୟତାକାର ପଡ଼ିଆର ଦୈର୍ଘ୍ୟ = AB = 72 ମି. ଓ ପ୍ରସ୍ଥ = BC = 48 ମି.
∴ AB = EF = GH ଏବଂ BC = QR = PS
ରାସ୍ତାର ଚଉରା = 2 ମି. ଅର୍ଥାତ୍ PQ = SR = EH = FG = 2 ମି.
PORS କ୍ଷେତ୍ରର କ୍ଷେତ୍ରଫଳ PS × PQ = (48 × 2) = 96 ଦ.ମି.
BSE Odisha 8th Class Maths Solutions Geometry Chapter 5 Img 22
EFGH କ୍ଷେତ୍ରର କ୍ଷେତ୍ରଫଳ = EF × EH = (72 × 2) = 144 ବ.ମି.
∴ UVWX ର କ୍ଷେତ୍ରଫଳ = UV × UX = (2 × 2) = 4 ବ.ମି.
∴ ରାସ୍ତାର କ୍ଷେତ୍ରଫଳ
= PORS ରାସ୍ତାର କ୍ଷେତ୍ରଫଳ + EFGH ରାସ୍ତାର କ୍ଷେତ୍ରଫଳ – UVWX ର କ୍ଷେତ୍ରଫଳ
= 96 + 144 – 4 = 236 ବ. ମିଟର ।

BSE Odisha 8th Class Maths Solutions Geometry Chapter 5 ପରିମିତି Ex 5(b)

Odisha State Board BSE Odisha 8th Class Maths Solutions Geometry Chapter 5 ପରିମିତି Ex 5(b) Textbook Exercise Questions and Answers.

BSE Odisha Class 8 Maths Solutions Geometry Chapter 5 ପରିମିତି Ex 5(b)

Question 1.
ପମଦିବ।ତୁ ତିଭୁଲରେ
(i) ଭୂମିର ଦୈର୍ଘ୍ୟ 10 ସେ.ମି. ଓ ପ୍ରତ୍ୟେକ ସମାନ ବାହୁର ଦୈର୍ଘ୍ୟ 13 ସେ.ମି. ହେଲେ, ଉଚ୍ଚତା କେତେ ?
(ii) ପ୍ରତ୍ୟେକ ସମାନ ବାହୁର ଦୈର୍ଘ୍ୟ 41 ସେ.ମି. ଏବଂ ଉଚ୍ଚତା ୨ ସେ.ମି. ହେଲେ, ଭୂମିର ଦୈର୍ଘ୍ୟ କେତେ ?
(iii) ଭୂମିର ଦୈର୍ଘ୍ୟ 14 ସେ.ମି. ଏବଂ ଉଚ୍ଚତା 24 ସେ.ମି. ହେଲେ, ପ୍ରତ୍ୟେକ ସମାନ ବାହୁର ଦୈର୍ଘ୍ୟ କେତେ ?
(iv) ଉଚ୍ଚତା 12 ସେ.ମି. ଓ ଭୂମିର ଦୈର୍ଘ୍ୟ ଉଚ୍ଚତାଠାରୁ 2 ସେ.ମି. କମ୍ ହେଲେ, ପ୍ରତ୍ୟେକ ସମାନ ବାହୁର ଦୈର୍ଘ୍ୟ କେତେ ?
Solution:
(i) ABC ସମଦ୍ବିବାହୁ ତ୍ରିଭୁଜର ପ୍ରତ୍ୟେକ ସମାନ ବାହୁର ଦୈର୍ଘ୍ୟ 13 ସେ.ମି. ଓ ଭୂମିର ଦୈର୍ଘ୍ୟ 10 ସେ.ମି. ।
BSE Odisha 8th Class Maths Solutions Geometry Chapter 5 Img 12
(ii) ABC ସମଦ୍ବିବାହୁ ତ୍ରିଭୁଜର ପ୍ରତ୍ୟେକ ସମାନ ବାହୁର ଦୈର୍ଘ୍ୟ 41 ସେ.ମି. ଓ ଭୂମିର 9 ସେ.ମି. ।
BSE Odisha 8th Class Maths Solutions Geometry Chapter 5 Img 13
(iii) ABC ସମଦ୍ବିବାହୁ ତ୍ରିଭୁଜର ପ୍ରତ୍ୟେକ ସମାନ ବାହୁର ଦୈର୍ଘ୍ୟ 12 ସେ.ମି. ଓ ଭୂମିର 24 ସେ.ମି. ।
BSE Odisha 8th Class Maths Solutions Geometry Chapter 5 Img 14

(iv) ABC ସମଡ଼ିବାହୁ ତ୍ରିଭୁଜର ଉଚ୍ଚତାର ଦୈର୍ଘ୍ୟ 12 ସେ.ମି. ଓ ଭୂମିର ଦୈର୍ଘ୍ୟ ଉଚ୍ଚତାର ଦୈର୍ଘ୍ୟଠାରୁ 2 ସେ.ମି. କମ୍।
ଦୈର୍ଘ୍ୟ ଉଚ୍ଚତାର ଦୈର୍ଘ୍ୟଠାରୁ = 12 – 2 = 10 ସେ.ମି. କମ୍।
BSE Odisha 8th Class Maths Solutions Geometry Chapter 5 Img 15

Question 2.
ABC ସମକୋଣା ପ୍ରଭୁକରେ m∠B = 90° ଓ AB = AC
(i) AB = 8 ସେ.ମି., କଣ୍ଠ \(\overline{\mathrm{AC}})\) ର ଦୈର୍ଘ୍ୟ ନିର୍ଣ୍ଣୟ କର ।
(ii) AB = 7 ସେ.ମି. ହେଲେ, କଅଁ AC ର ଦୈର୍ଘ୍ୟ ନିର୍ଣ୍ଣୟ କର ।
(iii) କଣ୍ଠ A ର ଦୈର୍ଘ୍ୟ 40 ସେ.ମି. ହେଲେ, \(\overline{\mathrm{BC}})\) ର ଦୈର୍ଘ୍ୟ ନିର୍ଣ୍ଣୟ କର ।
(iv) କଣ୍ଠ \(\overline{\mathrm{AC}})\) ର ଦୈର୍ଘ୍ୟ 25 ସେ.ମି. ହେଲେ, \(\overline{\mathrm{AB}})\) ର ଦୈର୍ଘ୍ୟ ନିର୍ଣ୍ଣୟ କର ।
Solution:
ABC ସମକୋଣୀ ତ୍ରିଭୁଜର
m∠B = 90° ଓ AB = BC
∴ ABC ଏକ ସମକୋଣୀ ସମଦ୍ବିବାହୁ ତ୍ରିଭୁଜ ।
BSE Odisha 8th Class Maths Solutions Geometry Chapter 5 Img 16

(i) AB = 8 ସେ.ମି. (ବର)
∴ସମକୋଣୀ ସମଦ୍ବିବାହୁ ତ୍ରିଭୁଜର କର୍ଷ (AC) ର ଦୈର୍ଘ୍ୟ
= ସମାନ ବାହୁ × √2 = AB × √2
= 8 × 2 = 8√2 ସେ.ମି.
ବିକଳ୍ପ ସମାଧାନ : AC2 = AB2 + BC2 ⇒ AC2 = 82 + 82
⇒ AC2 = 2 × 82 ⇒ AC = 8√2 ସେ.ମି.,

(ii) AB = 7 ସେ.ମି. (ବର)
ସମକୋଣୀ ସମଦ୍ବିବାହୁ ତ୍ରିଭୁଜର କଣ୍ଠ = √2 × ସମାନ ବାହୁ = 7√2 ସେ.ମି.
∴ AC = 7√2 ସେ.ମି.

(iii) କଣ୍ଠ (AC) = 40 ସେ.ମି. (ଦତ୍ତ)
ଗମଲୋଗ ସମବିବାହି ତ୍ରିଭୁଜର ପ୍ରତ୍ୟେଲ ପାଦନ ଦବାନ୍ତୁର ଦୈର୍ଘ୍ୟ = \(\frac { କଣ୍ଠର ଦୈର୍ଘ୍ୟ }{ 2 }\)
⇒ BC = \(\frac{\mathrm{AC}}{\sqrt{2}}\) = \(\frac{\mathrm{40}}{\sqrt{2}}\) = \(\frac{40 \sqrt{2}}{\sqrt{2} \times \sqrt{2}}\) = \(\frac{40 \sqrt{2}}{2}\) = 20√2
∴BC = 20√2 ସେ.ମି.
ବିକଳ୍ପ ସମାଧାନ : AC2 = AB2 + BC2 = BC2 + BC2 (∵ AB = BC)
⇒ 402 = 2 BC2 ⇒ √2BC = 40
⇒ AB = \(\frac{\mathrm{40}}{\sqrt{2}}\) = 20√2 ସେ.ମି.

(iv) କର୍ଷ (AC) = 25 ସେ.ମି. (ଦ୍‌ର)
ସମକୋଣୀ ସମଙ୍ଗିବାହୁ ତ୍ରିଭୁଜର ପ୍ରତ୍ୟେକ ସମାନ ବାହୁର ଦୈର୍ଘ୍ୟ = \(\frac { କଣ୍ଠର ଦୈର୍ଘ୍ୟ }{ 2 }\)
\(\frac{25}{\sqrt{2}}\) = \(\frac{25 \sqrt{2}}{2}\) = 12.5√2 ସେ.ମି. |
∴AB = 12.5√2 ସେ.ମି. |

BSE Odisha 8th Class Maths Solutions Geometry Chapter 5 ପରିମିତି Ex 5(b)

Question 3.
(i) ଗୋଟିଏ ବର୍ଗଚିତ୍ରର ବାହୁର ଦୈର୍ଘ୍ୟ 7 ସେ.ମି. ହେଲେ, କର୍ପୂର ଦୈର୍ଘ୍ୟ ନିର୍ଣ୍ଣୟ କର ।
(ii) ଗୋଟିଏ ବର୍ଗଚିତ୍ରର କର୍ଣ୍ଣର ଦୈର୍ଘ୍ୟ 18 ସେ.ମି. ହେଲେ, ବାହୁର ଦୈର୍ଘ୍ୟ ନିର୍ଣ୍ଣୟ କର ।
(iii) ଗୋଟିଏ ବର୍ଗଚିତ୍ରର କଣ୍ଠର ଦୈର୍ଘ୍ୟ 22√2 ସେ.ମି. ହେଲେ, ଏହାର ପରିସୀମା ନିର୍ଣ୍ଣୟ କର ।
(iv) ଗୋଟିଏ ବର୍ଗଚିତ୍ରର ବାହୁର ଦୈର୍ଘ୍ୟ 2 ସେ.ମି. ବର୍ଗଚିତ୍ରର କଣ୍ଠ କେତେ ସେ.ମି. ବଢ଼ିବ ?
Solution:
(i) ଏକ ବର୍ଗଚିତ୍ରର ବାହୁର ଦୈର୍ଘ୍ୟ = 7 ସେ.ମି.
∴ ବର୍ଗଚିତ୍ରର କର୍ପୂର ଦୈର୍ଘ୍ୟ = ବାହୁର ଦୈର୍ଘ୍ୟ × √2 = 7 × √2 = 7√2 ସେ.ମି.

(ii) ଏକ ବର୍ଗଚିତ୍ରର ବାହୁର ଦୈର୍ଘ୍ୟ = 18 ସେ.ମି.
∴ ବର୍ଗଚିତ୍ରର କର୍ପୂର ଦୈର୍ଘ୍ୟ = \(\frac { କଣ୍ଠର ଦୈର୍ଘ୍ୟ }{ 2 }\) = \(\frac{18}{\sqrt{2}}\) = \(\frac{18 \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}}\) = \(\frac{18 \sqrt{2}}{2}\) = 9√2 ସେ.ମି.

(iii) ବର୍ଗଚିତ୍ରର କଣ୍ଠର ଦୈର୍ଘ୍ୟ = 22√2 ସେ.ମି.
∴ ବର୍ଗଚିତ୍ରର ବାହୁର ଦୈର୍ଘ୍ୟ = \(\frac { କଣ୍ଠର ଦୈର୍ଘ୍ୟ }{ 2 }\) = \(\frac{22 \sqrt{2}}{\sqrt{2}}\) = 22 ସେ.ମି.
ପରିସୀମା = ବାହ୍ନ × 4 = 22 × 4 = 88 ସେ.ମି. |

(iv) ମନେକର ବାହୁର ଦୈର୍ଘ୍ୟ a ସେ.ମି. ଓ କର୍ଣ୍ଣ = √2 a ସେ.ମି. |
2 ସେ.ମି. ବଢ଼ିଗଲେ ବାହୁର ଦୈର୍ଘ୍ୟ = (a + 2) ସେ.ମି. ଓ କର୍ପୂର ଦୈର୍ଘ୍ୟ = √2(a + 2) ସେ.ମି. |
ଅଧ୍ଵଜ = √2(a + 2) – √2a = √2a + 2√2 – √2a = 2√2 ସେ.ମି.
∴ ବାହୁର ଦୈର୍ଘ୍ୟ 2 ସେ.ମି. ବଢ଼ିଲେ କର୍ପୂର ଦୈର୍ଘ୍ୟ 2√2 ସେ.ମି. ବଢ଼ିବ ।

Question 4.
ଗୋଟିଏ ଆୟତଚିତ୍ରର ସମକୋଣସଂଲଗ୍ନ ବାହୁଦ୍ୱୟର ଦୈର୍ଘ୍ୟ ନିମ୍ନରେ ଦତ୍ତ ଅଛି । କର୍ପୂର ଦୈର୍ଘ୍ୟ ନିର୍ଣ୍ଣୟ କର ।
(i) 75 ମି. ଓ 40 ମି.
(ii) 14 ମି. ଓ 48 ମି.
Solution:
(i) ଆୟତଚିତ୍ରର ସମକୋଣସଂଲଗ୍ନ ବାହୁଦ୍ୱୟର ଦୈର୍ଘ୍ୟ 75ମି. ଓ 40 ମି. ।
∴ଏହାର କର୍ପୂର ଦୈର୍ଘ୍ୟ
= \(\sqrt{75^2+40^2}\) = \(\sqrt{5^2 \times 15^2+5^2 \times 8^2}\) = \(\sqrt{5^2 \times\left(15^2+8^2\right)}\) = \(\sqrt{5^2 \times 17^2}\) ( ∵ 8, 15, 17 ଏକ ପିଥାଗୋରୀୟ ଟ୍ରିପଲ୍)
= 5 × 17 = 85 ମି. ।

(ii) ଆୟତଚିତ୍ରର ସମକୋଣସଂଲଗ୍ନ ବାହୁଦ୍ୱୟର ଦୈର୍ଘ୍ୟ 14ମି. ଓ 48 ମି. ।
∴ଏହାର କର୍ପୂର ଦୈର୍ଘ୍ୟ
= \(\sqrt{14^2+48^2}\) = \(\sqrt{2^2 \times 7^2+2^2 \times 24^2}\) = \(\sqrt{2^2\left(7^2+24^2\right)}\) = \(\sqrt{2^2 \times 25^2}\) (∵ 7, 24 ଓ 25 ଏକ ପିଥାଗୋରୀୟ ଟ୍ରିପଲ୍)
= 2 × 25 = 50 ମି. ।

Question 5.
ଗୋଟିଏ ସମବାହୁ ତ୍ରିଭୁଜର ପରିସୀମା 24 ସେ.ମି. ହେଲେ, ଏହାର ଉଚ୍ଚତା ନିର୍ଣ୍ଣୟ କର ।
Solution:
ସମବାହୁ △ ର ପରିସୀମା = 24 ସେ.ମି. ।
ସମବାହୁ ତ୍ରିଭୁଜର ବାହୁର ଦୈର୍ଘ୍ୟ = \(\frac { ପରିସୀମା }{ 3 }\)
∴ ବାହୁର ଦୈର୍ଘ୍ୟ = \(\frac { 24 }{ 3 }\) = 8 ସେ.ମି.
ଉଚ୍ଚତା = \(\frac{\sqrt{3}}{2}\) × ବାହୁର ଦୈର୍ଘ୍ୟ = \(\frac{\sqrt{3}}{2}\) × 8 = 4√3 ସେ.ମି.
∴ ସମବାହୁ △ ର ଉଚ୍ଚତା 4√3 ସେ.ମି. ।

Question 6.
ଗୋଟିଏ ସମବାହୁ ତ୍ରିଭୁଜର ଏକ ଶୀର୍ଷବିନ୍ଦୁରୁ ବିପରୀତ ବାହୁର ମଧ୍ୟବିନ୍ଦୁର ଦୂରତା 15√3 ଡେସିମିଟର ହେଲେ, ଏହାର ପରିସୀମା ନିର୍ଣ୍ଣୟ କର ।
Solution:
ସମବାହୁ ତ୍ରିଭୁଜର ଏକ ଶୀର୍ଷବିନ୍ଦୁରୁ ବିପରୀତ ବାହୁର ମଧ୍ୟବିନ୍ଦୁର ଦୂରତା
= ସମବାହୁ ତ୍ରିଭୁଜର ଉଚ୍ଚତା = 15√3 ଡେସି ମି.
ସମବାହୁ ତ୍ରିଭୁଜର ପ୍ରତ୍ୟେକ ମପାନ ବାହୁର ଦୈର୍ଘ୍ୟ = ଉଚ୍ଚତା × \(\frac{2}{\sqrt{3}}\) = 15√3 × \(\frac{2}{\sqrt{3}}\) = 30 ଡେସି ମି.
∴ ସମବାହୁ ତ୍ରିଭୁଜର ପରିସୀମା = ବାହୁର ଦୈର୍ଘ୍ୟ × 3 = 30 ହେକିମି. × 3 = 90 ଡେସି ମି. |

BSE Odisha 8th Class Maths Solutions Geometry Chapter 5 ପରିମିତି Ex 5(b)

Question 7.
ଗୋଟିଏ ସମଦ୍ବିବାହୁ ତ୍ରିଭୁଜର ପ୍ରତ୍ୟେକ ସମାନ ବାହୁ 51 ସେ.ମି. ଓ ତୃତୀୟ ବାହୁ ପ୍ରତି ଅଙ୍କିତ ଉଚ୍ଚତାର ଦୈର୍ଘ୍ୟ 45 ସେ.ମି. ହେଲେ, ଏହି ବାହୁର ଦୈର୍ଘ୍ୟ ନିର୍ଣ୍ଣୟ କର ।
Solution:
AB = AC = 51 ସେ.ମି. , AD = 45 ସେ.ମି.
∴ BD (ଅର୍ଦ୍ଧଭୂମି)
= \(\sqrt{A B^2-A D^2}\) = \(\sqrt{51^2-45^2}\) = \(\sqrt{3^2 \cdot 17^2-3^2 \cdot 15^2}\) = \(\sqrt{3^2\left(17^2-15^2\right)}\) = \(\sqrt{3^2 \cdot 8^2}\) = 3 × 8 = 24 ସେ.ମି.
∴ BC = 2BD = 2 × 24 = 48 ସେ.ମି.
∴ ତୃତୀୟ ବାହୁର ଦୈର୍ଘ୍ୟ 48 ସେ.ମି. |
BSE Odisha 8th Class Maths Solutions Geometry Chapter 5 Img 18

Question 8.
ଗୋଟିଏ ସମଦ୍ବିବାହୁ ତ୍ରିଭୁଜର ଭୂମିର ଦୈର୍ଘ୍ୟ 96 ସେ.ମି. ଓ ଉଚ୍ଚତା 14 ସେ.ମି. ଦ୍ରେଲେ, ଏହାର ପ୍ରତ୍ୟେକ ସମାନ ବାହୁର ଦୈର୍ଘ୍ୟ ଓ ପରିସୀମା ନିର୍ଣ୍ଣୟ କର ।
Solution:
ABC ସମଦ୍ବିବାହୁ △ ର BC = ଭୂମି = 6 ସେ.ମି.
∴BD = 1/2 BC = 1/2 × 96 = 48 ସେ.ମି.
AD = ଉଚ୍ଚତା = 14 ସେ.ମି. AB ଓ AC ତ୍ରିଭୁଜର ସମାନ ବାହୁ ।
ABD ସମରୋଗ ତ୍ରିଭୁଜର ∠D ପପକୋଶୀ | AB = କଣ୍ଡ, AD = ଭଲତା BD = ଭୁମି ପିଆରେ।ଉପକ ଉପପାଦ୍ୟ ଅନୁସାରେ,
∴ AB = \(\sqrt{\mathrm{AD}^2+\mathrm{BD}^2}\) = \(\sqrt{14^2+48^2}\) = \(\sqrt{2^2 \cdot 7^2+2^2 \cdot 24^2} \) = \(\sqrt{2^2\left(7^2+24^2\right)}\) = \(\sqrt{2^2 \cdot 25^2}\) = 2 × 25 = 50 ସେ.ମି. | ( ∵57, 24, 25 ଏକ ପିଆରେ।ଦାପ ବାହୁର )
∴ ପରିମାପ। = 96 + 50 + 50 = 196 ସେ.ମି. |
∴ ସମଙ୍ଗିବାହୁ △ ର ପ୍ରତ୍ୟେକ ସମାନ ବାହୁର ଦୈର୍ଘ୍ୟ 50 ସେ.ମି. ଓ ପରିସୀମା 196 ସେ.ମି. ।
BSE Odisha 8th Class Maths Solutions Geometry Chapter 5 Img 19

Question 9.
ଗୋଟିଏ ସମକୋଣୀ ସମଦ୍ବିବାହୁ ତ୍ରିଭୁଜର ପରିସୀମା 8(√2 + 1) ମିଟର ହେଲେ, ଏହାର ପ୍ରତ୍ୟେକ ସମାନ ବାହୁର ଦୈର୍ଘ୍ୟ ନିର୍ଣ୍ଣୟ କର ।
Solution:
ସମକୋଣୀ ସମଦ୍ବିବାହୁ ତ୍ରିଭୁଜର ପରିସୀମା = 8(√2 + 1) ମିଟର |
ମନେକର ସମକୋଣୀ ସମଦିବାହୁ ତ୍ରିଭୁଜର ପ୍ରତ୍ୟେକ ସମାନ୍ ବାହୁ = a ମିଟର
ତେବେ କାଣ୍ଡର ଦେଶ୍ୟ = √2a ମି. |
∴ △ ର ପରିସୀମା = a + a + √2.a = 2a + √2.a = √2a (√2 + 1) ମି.
ପ୍ରଶ୍ନନୁସାରେ √2.a (√2 + 1) = 8 ( √2 + 1)
⇒ √2.a = 8 ⇒ a = \(\frac{8}{\sqrt{2}}\) = \(\frac{8 \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}}\) = \(\frac{8 \sqrt{2}}{2}\) = 4√2 ମି.
∴ ସମକୋଣୀ ସମଦ୍ବିବାହୁ ତ୍ରିଭୁଜର ପ୍ରତ୍ୟେକ ସମାନ୍ କାଣ୍ଡର ଦେଶ୍ୟ 4√2 ମି.

Question 10.
ଗୋଟିଏ ବର୍ଗଚିତ୍ରର ବାହୁର ଦୈର୍ଘ୍ୟ 5 ସେ.ମି. ବଢ଼ିଗଲେ ଏହାର ପରିସୀମାରେ କେତେ ବୃଦ୍ଧି ଘଟିବ ଏବଂ କର୍ଣ୍ଣର ଦୈର୍ଘ୍ୟରେ ମଧ୍ୟ କେତେ ବୃଦ୍ଧି ଘଟିବ ସ୍ଥିର କର ।
Solution:
ମନେକର ବର୍ଗଚିତ୍ରର ବାହୁର ଦୈର୍ଘ୍ୟ a ସେ.ମି.
∴କଣ୍ଠ = √2 a ସେ.ମି. ଓ ପରିସୀମା = 4a ସେ.ମି.
ବାହୁ 5 ସେ.ମି. ବଢ଼ିଲେ ବାହୁର ଦୈର୍ଘ୍ୟ = (a + 5) ସେ.ମି.
କଣ୍ଠର ଦୈର୍ଘ୍ୟ = √2(a + 5) ସେ.ମି. ହେବା
ଓ ପରିସୀମା = 4(a + 5) ସେ.ମି.
ପରିସୀମା ବୃଦ୍ଧି ହେବ = 4(a + 5) – 4a = 4a + 20 – 4a = 20 ସେ.ମି.
କଣ୍ଠର ଦୈର୍ଘ୍ୟ ବୃଦ୍ଧି ହେବ = √2(a + 5) – √2a = √2a + 5√2 – √2a = 5√2 ସେ.ମି. ବୃଦ୍ଧି ଘଟିବ |

BSE Odisha 8th Class Maths Solutions Geometry Chapter 5 ପରିମିତି Ex 5(a)

Odisha State Board BSE Odisha 8th Class Maths Solutions Geometry Chapter 5 ପରିମିତି Ex 5(a) Textbook Exercise Questions and Answers.

BSE Odisha Class 8 Maths Solutions Geometry Chapter 5 ପରିମିତି Ex 5(a)

Question 1.
କେତେକ ସମକୋଣୀ ତ୍ରିଭୁଜର ସମକୋଣସଂଲଗ୍ନ ବାହୁ ଦୁଇଟିର ଦୈର୍ଘ୍ୟ ନିମ୍ନରେ ଦିଆଯାଇଛି । ପିଥାଗୋରୀୟ ତ୍ରୟୀ ସାହାଯ୍ୟରେ ପ୍ରତ୍ୟେକ ସମକୋଣୀ ତ୍ରିଭୁଜର କର୍ପୂର ଦୈର୍ଘ୍ୟ ନିର୍ଣ୍ଣୟ କର ।
(i) 3 ମି. ଓ 4 ମି.
(ii) 5 ସେ.ମି. ଓ 12 ସେ.ମି.
(iii) 7 ସେ.ମି. ଓ 24 ସେ.ମି.
(iv) 8 ମି. ଓ 15 ମି.
(v) 1.5 ସେ.ମି. ଓ 2 ସେ.ମି.
(vi) 10 ସେ.ମି. ଓ 24 ସେ.ମି.
Solution:
(i) 5 ମି. ( ∵3, 4 ଓ 5 ଗଣନ ସଂଖ୍ୟାତ୍ରୟ ପିଥାଗୋରୀୟ ଟ୍ରିପ୍‌ଲ)
(ii) 13 ସେ.ମି. (∵ 15, 12 ଓ 13 ଗଣନ ସଂଖ୍ୟାତ୍ରୟ ପିଥାଗୋରୀୟ ଟ୍ରିପ୍‌ଲ)
(iii) 25 ସେ.ମି. (∵ 7, 24 ଓ 25 ଗଣନ ସଂଖ୍ୟାତ୍ରୟ ପିଥାଗୋରୀୟ ଟ୍ରିପ୍‌ଲ)
(iv) 17 ମି. (∵ 8, 15 ଓ 17 ଗଣନ ସଂଖ୍ୟାତ୍ରୟ ପିଥାଗୋରୀୟ ଟ୍ରିପ୍‌ଲ)
(v) 2.5 ସେ.ମି. (∵1.5, 2 ଓ 2.5 ପରିମେୟ ସଂଖ୍ୟାତ୍ରୟ ପିଥାଗୋରୀୟ ଟ୍ରିପ୍‌ଲ)
(vi) 26 ସେ.ମି. (∵ 3, 4 ଓ 5 ଗଣନ ସଂଖ୍ୟାତ୍ରୟ ପିଥାଗୋରୀୟ ଟ୍ରିପ୍‌ଲ)

Question 2.
ନିମ୍ନରେ ସମକୋଣୀ ତ୍ରିଭୁଜର ଯଥାକ୍ରମେ କର୍ପୂର ଦୈର୍ଘ୍ୟ ଓ ଏକ ବାହୁର ଦୈର୍ଘ୍ୟ ଦତ୍ତ ଅଛି । ତ୍ରିଭୁଜର ତୃତୀୟ ବାହୁର ଦୈର୍ଘ୍ୟ ସ୍ଥିର କର ।
(i) 2.5 ସେ.ମି. ଓ 2.4 ସେ.ମି.
(ii) 4.1 ମି. ଓ 4 ମି.
(iii) 12.5 ମି. ଓ 10 ମି.
(iv) 125 ମି. ଓ 100 ମି.
(v) 299 ମି. ଓ 276 ମି..
Solution:
(i) ବାହୁର ଦୈର୍ଘ୍ୟ = 2.5 ସେ.ମି. ଓ ଗୋଟିଏ ବାହୁର ଦୈର୍ଘ୍ୟ = 2.4 ସେ.ମି.
∴ ତୃତୀୟ ବାହୁର ଦୈର୍ଘ୍ୟ = \(\sqrt{(2 \cdot 5)^2-(2 \cdot 4)^2}\) = \(\sqrt{6 \cdot 25-5 \cdot 76}\) = \(\sqrt{0 \cdot 49}\) = 0.7 ସେ.ମି.
ତୃତୀୟ ବାହୁର ଦୈର୍ଘ୍ୟ ନିଣ୍ଡୟର ବିକନ୍ତ ପଣାଲା :
\(\sqrt{(2 \cdot 5)^2-(2 \cdot 4)^2}\) = \(\sqrt{(2 \cdot 5+2 \cdot 4)(2 \cdot 5-2 \cdot 4)}\) [∵a2 – b2 = (a + b) (a – b)]
= \(\sqrt{4 \cdot 9 \times 0 \cdot 1}\) = \(\sqrt{0.49}\) = 0.7 ସେ.ମି.

(ii) ବାହୁର ଦୈର୍ଘ୍ୟ = 4.1 ମି. ଓ ଗୋଟିଏ ବାହୁର ଦୈର୍ଘ୍ୟ = 4 ମି.
∴ ତୃତୀୟ ବାହୁର ଦୈର୍ଘ୍ୟ = \(\sqrt{(4 \cdot 1)^2-(4)^2}\) = \(\sqrt{16 \cdot 81-16}\) = \(\sqrt{0 \cdot 81}\) = 0.9 ମି.

(iii) ବାହୁର ଦୈର୍ଘ୍ୟ = 12.5 ମି. ଓ ଗୋଟିଏ ବାହୁର ଦୈର୍ଘ୍ୟ = 10 ମି.
∴ ତୃତୀୟ ବାହୁର ଦୈର୍ଘ୍ୟ = \(\sqrt{(12.5)^2-(10)^2}\) = \(\sqrt{(156.25-100)}\) = \(\sqrt{56.25}\) = 7.5 ମି.

(iv) ବାହୁର ଦୈର୍ଘ୍ୟ = 125 ମି. ଓ ଗୋଟିଏ ବାହୁର ଦୈର୍ଘ୍ୟ = 100 ମି.
∴ ତୃତୀୟ ବାହୁର ଦୈର୍ଘ୍ୟ = \(\sqrt{(125)^2-(100)^2}\) = \(\sqrt{(125+100)(125-100)}\) = \(\sqrt{225 \times 25}\) = 15 × 5 = 75 ମି.
ଅଥବା \(\sqrt{125^2-100^2}\) = \(\sqrt{25^2 \times 5^2-25^2 \times 4^2}\) = \(\sqrt{25^2\left(5^2-4^2\right)}\) = \(\sqrt{25^2 \times 3^2}\) = 25 × 3 = 75 ମି.

(v) ବାହୁର ଦୈର୍ଘ୍ୟ = 299 ମି. ଓ ଗୋଟିଏ ବାହୁର ଦୈର୍ଘ୍ୟ = 276 ସେ.ମି.
∴ ତୃତୀୟ ବାହୁର ଦୈର୍ଘ୍ୟ = \(\sqrt{(299)^2-(276)^2}\) = \(\sqrt{(299+276)(299-276)}\) = \(\sqrt{575 \times 23}\) = \(\sqrt{5 \times 5 \times 23 \times 23}\) = 5 × 23 = 115 ମି.

BSE Odisha 8th Class Maths Solutions Geometry Chapter 5 ପରିମିତି Ex 5(a)

Question 3.
ନିମ୍ନରେ କେତେଗୁଡ଼ିଏ ତ୍ରିଭୁଜର ବାହୁମାନଙ୍କର ଦୈର୍ଘ୍ୟ ଦତ୍ତ ଅଛି । ପ୍ରମାଣ କର ଯେ ପ୍ରତ୍ୟେକ ଗୋଟିଏ ଲେଖାଏଁ ସମକୋଣା ତୁରୁକ |
(i) 11 ସେ.ମି., 60 ସେ.ମି. ଓ 61 ସେ.ମି.
(ii) 0.8 ମି., 1.5 ମି. ଓ 1.7 ମି.
(iii) 0.9 ତେ.ମି., 4 ତେ.ମି. ଓ 4.1 ତେ.ମି.
(iv) 0.7 ସେ.ମି., 24 ସେ.ମି. ଓ 2.5 ସେ.ମି.
Solution:
(i) 112 + 602 = 121 + 3600 = 3721 = (61)2
∴ ଏହା ଗୋଟିଏ ସମକୋଣୀ ତ୍ରିଭୁଜ ।
(ii)
(0.8)2 + (1.5)2 = 0.64 + 2.25 = 2.89 = (1.7)2
∴ ଏହା ଗୋଟିଏ ସମକୋଣୀ ତ୍ରିଭୁଜ ।

(iii) (0.9)2 + (4)2 = 0.81 + 16 = 16.81 = (4.1)2
∴ ଏହା ଗୋଟିଏ ସମକୋଣୀ ତ୍ରିଭୁଜ ।

(iv) (0.7)2 + (2.4)2 = 0.49 + 5.76 = 6.25 = (2.5)2
∴ ଏହା ଗୋଟିଏ ସମକୋଣୀ ତ୍ରିଭୁଜ ।

Question 4.
ABC ତ୍ରିଭୁଜରେ ବାହୁତ୍ରୟର ଦୈର୍ଘ୍ୟ ଦିଆଯାଇଛି । ପ୍ରଥମେ ପରୀକ୍ଷା କରି ଦେଖ ABC ଏକ ସମକୋଣୀ ତ୍ରିଭୁଜ କି ? ଯଦି ଉତ୍ତର ହଁ ହୁଏ, ତେବେ ତ୍ରିଭୁଜର କେଉଁ କୋଣର ପରିମାଣ 90° ହେବ ?
(i) AB = 3 ସେ.ମି., BC = 4 ସେ.ମି. ଏବଂ CA = 5 ସେ.ମି.
(ii) CA = 5 ସେ.ମି., AB = 12 ସେ.ମି. ଏବଂ BC = 13 ସେ.ମି.
(iii) BC = 7 ସେ.ମି., CA = 24 ସେ.ମି. ଏବଂ AB = 25 ସେ.ମି.
(iv) BC = 9 ସେ.ମି., AB = 40 ସେ.ମି. ଏବଂ AC = 41 ସେ.ମି.
(v) AB = 8 ସେ.ମି., BC = 15 ସେ.ମି. ଏବଂ CA = 17 ସେ.ମି.
Solution:
(i) ABC ତ୍ରିଭୁଜରେ AB = 3 ସେ.ମି., BC = 4 ସେ.ମି. ଓ AC = 5 ସେ.ମି. |
(ii) AB2 + BC2 = (3)2 + (4)2 = 9 + 16 = 25 = (5)2 = AC2
ତେଣୁ ABC ଏକ ସମକୋଣୀ ତ୍ରିଭୁଜ ।
ଏହି ତ୍ରିଭୁଜର ବୃହତ୍ତମ ବାହୁ AC = ତ୍ରିଭୁଜର କଣ୍ଠ ।
AC କର୍ପୂର ସମ୍ମୁଖୀନ କୋଣ ∠ABC ର ପରିମାଣ 90° ହେବ ।
BSE Odisha 8th Class Maths Solutions Geometry Chapter 5 Img 1

(ii) ABC ତ୍ରିଭୁଜରେ CA = 5 ସେ.ମି., AB = 12 ସେ.ମି. ଏବଂ BC = 13 ସେ.ମି. |
AC2 + AB2 = 52 + 122 = 25 + 144 = 169 = 132 = BC2
ତେଣୁ ABC ଏକ ସମକୋଣୀ ତ୍ରିଭୁଜ ।
ଏହି ତ୍ରିଭୁଜର ବୃହତ୍ତମ ବାହୁ BC = ତ୍ରିଭୁଜର କର୍ଣ୍ଣ ।
BC କର୍ପୂର ସମ୍ମୁଖୀନ କୋଣ ∠BAC ର ପରିମାଣ 90° ହେବ ।
BSE Odisha 8th Class Maths Solutions Geometry Chapter 5 Img 2

(iii) ABC ତ୍ରିଭୁଜରେ BC = 7 ସେ.ମି., CA = 24 ସେ.ମି. ଏବଂ AB = 25 ସେ.ମି.
BC2 + AC2 = 72 + 242 = 49 + 576 = 625 = 252 = AB2
ତେଣୁ ABC ଏକ ସମକୋଣୀ ତ୍ରିଭୁଜ ।
ଏହି ତ୍ରିଭୁଜର ବୃହତ୍ତମ ବାହୁ AB = ତ୍ରିଭୁଜର କର୍ଣ୍ଣ ।
AB କର୍ପୂର ସମ୍ମୁଖୀନ କୋଣ ZACB ର ପରିମାଣ 90° ହେବ ।
BSE Odisha 8th Class Maths Solutions Geometry Chapter 5 Img 3

(iv) ABC ତ୍ରିଭୁଜରେ BC = 9 ସେ.ମି., AB = 40 ସେ.ମି. ଏବଂ AC = 41 ସେ.ମି.
BC2 + AB2 = 92 + 402 = 81 + 1600 = 1681 = 412 = AC2
ତେଣୁ ABC ଏକ ସମକୋଣୀ ତ୍ରିଭୁଜ ।
ଏହି ତ୍ରିଭୁଜର ବୃହତ୍ତମ ବାହୁ AC = ତ୍ରିଭୁଜର କର୍ଣ୍ଣ ।
AC କର୍ପୂର ସମ୍ମୁଖୀନ କୋଣ ∠ABC ର ପରିମାଣ 90° ହେବ ।
BSE Odisha 8th Class Maths Solutions Geometry Chapter 5 Img 4

(v) ABC ତ୍ରିଭୁଜରେ AB = 8 ସେ.ମି., BC = 15 ସେ.ମି. ଏବଂ CA = 17 ସେ.ମି.
AB2 + BC2 = 82 + 152 = 64 + 225 = 289 = 172 = AC2
ତେଣୁ ABC ଏକ ସମକୋଣୀ ତ୍ରିଭୁଜ ।
ଏହି ତ୍ରିଭୁଜର ବୃହତ୍ତମ ବାହୁ AC = ତ୍ରିଭୁଜର କଣ୍ଠି ।
AC କର୍ପୂର ସମ୍ମୁଖୀନ କୋଣ ∠ABC ର ପରିମାଣ 90° ହେବ ।
BSE Odisha 8th Class Maths Solutions Geometry Chapter 5 Img 5

Question 5.
ଜଣେ ବ୍ୟକ୍ତି A ସ୍ଥାନରୁ ବାହାରି ପୂର୍ବ ଦିଗକୁ 50 ମିଟର ଗତିକଲା ପରେ ସେଠାରୁ ଉଭର 120 ମିଟର ଗତିକରି B ନାମକ ସ୍ଥାନରେ ପହଞ୍ଚିଲେ । A ଠାରୁ B ର ଦୂରତା କେତେ ?
Solution:
ଜଣେ ବାହାରି ଗତିପଥ A ରୁ ପୂର୍ବକୁ 50 ମି. ଗତିକରି ‘O’ ବିନ୍ଦୁରେ ପହଞ୍ଚିଲା । ପୁନଶ୍ଚ O ରୁ ଉତ୍ତରକୁ 120 ମି. ଗତିକରି B ନାମକ ସ୍ଥାନରେ ପହଞ୍ଚି AOB ସମକୋଣୀ ତ୍ରିଭୁଜ ଉତ୍ପନ୍ନ ହେଲା ।
ଏହାର m∠O = 90°
∴ AOB ସମକୋଣୀ ତ୍ରିଭୁଜର ସମକୋଣସଂଲଗ୍ନ ବାହୁଦ୍ୱୟ BO = 120 ମି. ଏବଂ AO = 50 ମି. |
A ଓ B ମତରେ ଦୁଇତା = କଣ୍ଡ = AB = \(\sqrt{\mathrm{OB}^2+\mathrm{OA}^2}\) = \(\sqrt{(120)^2+(50)^2}\) (ପିଥାଗୋରୀୟ ଉପପାଦ୍ୟ)
= \(\sqrt{14400+2500}\) = \(\sqrt{16,900}\) = 130 ମିଟର |
BSE Odisha 8th Class Maths Solutions Geometry Chapter 5 Img 6

Question 6.
20 ମିଟର ଉଚ୍ଚ. ଗୋଟିଏ ତାଳଗଛ ଝଡ଼ରେ ନଇଁ ପଡ଼ିବାରୁ‘ତା’ର ଅଗ୍ରଭାଗ ସେହି ଗଛର ମୂଳଠାରୁ 12 ମିଟର ଦୂରରେ ଅବସ୍ଥିତ ଏକ ସ୍ତମ୍ଭର ଅଗ୍ରଭାଗକୁ ସ୍ପର୍ଶକଲା । ସ୍ତମ୍ଭଟିର ଉଚ୍ଚତା ନିର୍ଣ୍ଣୟ କର ।
Solution:
AB = ତାଳଗଛର ଉଚ୍ଚତା = 20 ମିଟର,
ତାଳଗଛ ଝଡ଼ରେ ନଇଁପଡ଼ିବାରୁ ତା’ର ଅଗ୍ରଭାଗ ସ୍ତମ୍ଭଠାରୁ 12 ମି. ଦୂରରେ ଥ‌ିବା
ସ୍ତମ୍ଭ DCର ଅଗ୍ରଭାଗ C କୁ ସ୍ପର୍ଶକଲା ।
BSE Odisha 8th Class Maths Solutions Geometry Chapter 5 Img 7
ବର୍ତ୍ତମାନ BDC ସମକୋଣୀ ତ୍ରିଭୁଜର ∠D ସମକୋଣ
AB = BC = 20 ମିଟର, BD = 12 ମିଟର
ପିଥାଗୋରସ୍‌ଙ୍କ ଉପପାଦ୍ୟ ଅନୁସାରେ CD = \(\sqrt{\mathrm{BC}^2-\mathrm{BD}^2}\) = \(\sqrt{20^2-12^2}\) = \(\sqrt{400-144}\) = \(\sqrt{256}\) = 16 ମିଟର
∴ସ୍ତମ୍ଭର ଉଚ୍ଚତା 16 ମିଟର ।

BSE Odisha 8th Class Maths Solutions Geometry Chapter 5 ପରିମିତି Ex 5(a)

Question 7.
ଗୋଟିଏ କୋଠାଘରର ବାହାର କାନ୍ଥର ପାଦଦେଶରୁ 8 ମିଟର ଦୂରରେ ଗୋଟିଏ ନିଶୁଣି ରଖ୍ କାନ୍ଥକୁ ଡେରିଦେଲେ, ନିଶୁଣିର ଅଗ୍ରଭାଗ କାନ୍ଥର ଉପରକୁ ସ୍ପର୍ଶ କରେ । ନିଶୁଣଟିର ଦୈର୍ଘ୍ୟ 10 ମିଟର ହେଲେ, କାନ୍ଥର ଉଚ୍ଚତା ସ୍ଥିର କର ।
Solution:
କୋଠାର ବାହାର କାନ୍ତର ଇଳତା = AB
ଏହାର ବାହାର ପାଦଦେଶ ‘B’ ଠାରୁ 8 ମି. ଦୂର ‘C’ ଠାରେ ଏକ ନିଶୁଣି
କାନ୍ଥର ଅଗ୍ରଭାଗ ‘A’ ଠାରେ ସ୍ପର୍ଶ କରେ ।
BSE Odisha 8th Class Maths Solutions Geometry Chapter 5 Img 8
ବର୍ତ୍ତମାନ ABC ସମକୋଣୀ △ର ∠B ସମକୋଣ ।
ନିଶୁଣିର ଦୈର୍ଘ୍ୟ AC = 10 ମିଟର, BC = 8 ମି.
∴ AB = \(\sqrt{\mathrm{AC}^2-\mathrm{BC}^2}\) = \(\sqrt{10^2-8^2}\) = \(\sqrt{100-64}\) = \(\sqrt{36}\) = 6 ମିଟର
∴ କାନ୍ଥର ଉଚ୍ଚତା 6 ମିଟର ।

Question 8.
ଗୋଟିଏ ଘରର ଦୁଇ ବିପରୀତ କାନ୍ଥର ଉଚ୍ଚତା ଯଥାକ୍ରମେ 25 ଡେସି ମି. ଓ 4 ଡେସି ମି. । କାନ୍ଥ ଦୁଇଟିର ଉପରିଭାଗକୁ ଲାଗିଥିବା ଗୋଟିଏ ସଳଖ କଡ଼ିର ଦୈର୍ଘ୍ୟ 65 ଡେସି ମି. ହେଲେ, ଘରର ପ୍ରସ୍ଥ ନିର୍ଣ୍ଣୟ କର ।
Solution:
ଘରର ଦୁଇ ବିପରୀତ କାନ୍ଥ AB ଓ CD | ଘରର ପ୍ରସ୍ଥ : = BC
କଡ଼ିର ଦୈର୍ଘ୍ୟ AD = 65 ଡେସି ମି. AB = 64 ଡେସି ମି. ଏବଂ CD = 25 ତେ.ମି.ମି.
D ବିନ୍ଦୁରୁ AB ଉପରେ ଅଙ୍କିତ ଲମ୍ବର ପାଦବିନ୍ଦୁ M ହେଲେ,
△AMD ରେ MD = BC ଏବଂ
BSE Odisha 8th Class Maths Solutions Geometry Chapter 5 Img 9
AM = AB – BM = AB – CD = 64 – 25 = 39 ତେ.ମି.ମି.
MD = \(\sqrt{\mathrm{AD}^2-A M^2}\) = \(\sqrt{65^2-39^2}\) = \(\sqrt{4225-1521}\) = \(\sqrt{2704}\) = 52 ତେ.ମି.ମି.
କିନ୍ତୁ MD = BC
∴ ଘରର ପ୍ରସ୍ଥ = BC = 52 ତେ.ମି.ମି.

Question 9.
ଗୋଟିଏ ପୋଖରୀରେ ଥିବା ଏକ ପଦ୍ମକଢ଼ିର ଅଗ୍ରଭାଗ ଜଳ ଉପରକୁ 1 ମିଟର ଦେଖାଯାଉଥିଲା । କିନ୍ତୁ ବାୟୁଦ୍ଵାରା ଏହି କଢ଼ିଟି ଆସ୍ତେ ଆସ୍ତେ ଘୁଞ୍ଚିଯାଇ ମିଟର ଦୂରରେ ଜଳସ୍ତର ସଙ୍ଗେ ମିଶିଗଲା । ପୋଖରୀରେ ଜଳର ଗଭୀରତା ନିଶ୍ଚୟ କର ।
Solution:
AB = ପଦ୍ମନାଡ଼ର ପ୍ରଥମ ଅବସ୍ଥା । ଏହାର AC ଅଂଶ ପାଣି ଉପରକୁ ଦେଖାଯାଉଛି ।
BC = ଜଳର ଗଭୀରତା । ପବନଦ୍ଵାରା ଚାଳିତ ହୋଇ ପଦ୍ମନାଡ଼ଟି 3 ମିଟର ଦୂରରେ D ବିନ୍ଦୁରେ ଜଳ ସହିତ ମିଶିଗଲା ।
BD = ପଦ୍ମନାଡ଼ର ଦ୍ଵିତୀୟ ଅବସ୍ଥା ।
∴ AB = BD = BC + AC
ମନେକର ଜଳର ଗଭୀରତା BC = x ମିଟର
∴ BD = (x + 1) ମିଟର
BSE Odisha 8th Class Maths Solutions Geometry Chapter 5 Img 10
ବରମାନ BCD ସମକୋଣା ପ୍ରତିଭୁଲରହି BD2 = BC2 + CD2
⇒ (x + 1)2 = x2 + 32 ⇒ x2 + 2x + 1 = x2 + 9
⇒ 2x = 9 – 1 ⇒ 2x = 8 ⇒ x = \(\frac { 8 }{ 2 }\) = 4 ମିଟର |
∴ ଜଳର ଗଭୀରତା 4 ମିଟର ।

Question 10.
ଗୋଟିଏ ସମକୋଣୀ ତ୍ରିଭୁଜର ଗୋଟିଏ ବାହୁର ଦୈର୍ଘ୍ୟ 32 ସେ.ମି. । ତାହାର କର୍ପୂର ଦୈର୍ଘ୍ୟ ଅନ୍ୟ ବାହୁର ଦୈର୍ଘ୍ୟ ଅପେକ୍ଷା ୫ ସେ.ମି. ବୃହତ୍ତର ହେଲେ, କର୍ପୂର ଦୈର୍ଘ୍ୟ ସ୍ଥିର କର ।
Solution:
ABC ସମକୋଣୀ ତ୍ରିଭୁଜର AB ବାହୁର ଦୈର୍ଘ୍ୟ = 32 ସେ.ମି.
ମନେକର BC ବାହୁର ଦୈର୍ଘ୍ୟ = x ସେ.ମି.
ପ୍ରଶାନୁସାରେ AC କର୍ଣ୍ଣର ଦୈର୍ଘ୍ୟ = (x + 8) ସେ.ମି.
BSE Odisha 8th Class Maths Solutions Geometry Chapter 5 Img 11
ଆମେ ଜାଣିଛେ, ABC ସମକୋଣୀ ତ୍ରିଭୁଜରେ, AC2 = AB2 + BC2
⇒ (x + 8)2 = (32)2 + x2 ⇒ x2 +82 + 2·x·8 = 1024 + x2
⇒ 64 + 16x = 1024 ⇒ 16x = 1024 – 64
⇒ 16x = 960 ⇒ x = \(\frac { 960 }{ 16 }\) = 60 ⇒ AC = (x + 8) ସେ.ମି.
= (60 + 8) ସେ.ମି. = 68 ସେ.ମି.
∴କର୍ଣ୍ଣର ଦୈର୍ଘ୍ୟ 68 ସେ.ମି. |

BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(h)

Odisha State Board BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(h) Textbook Exercise Questions and Answers.

BSE Odisha Class 8 Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(h)

Question 1.
ଘନ ନିର୍ଣ୍ଣୟ କର ।
(i) \(\frac{7}{9}\)
(ii) \(– \frac{8}{11}\)
(iii) \(\frac{12}{7}\)
(iv) \(– \frac{13}{8}\)
(v) \(2 \frac{3}{5}\)
(vi) \(3 \frac{1}{4}\)
(vii) \(-1 \frac{2}{3}\)
(viii) 0.2
(ix) 1.3
(x) 0.03
ସମାଧାନ :
(i) \(\frac{7}{9}\)ର ଘନ = \(\left(\frac{7}{9}\right)^3=\frac{7^3}{9^3}=\frac{343}{729}\)

(ii) \(– \frac{8}{11}\)ର ଘନ = \(\left(\frac{-8}{11}\right)^3=\frac{(-8)^3}{11^3}=-\frac{512}{1331}\)

(iii) \(\frac{12}{7}\)ର ଘନ = \(\left(\frac{12}{7}\right)^3=\frac{12^3}{7^3}=\frac{1728}{343}\)

(iv) \(– \frac{13}{8}\)ର ଘନ = \(\left(\frac{-13}{8}\right)^3=\frac{(-13)^3}{8^3}=\frac{-2197}{512}\)

(v) \(2 \frac{3}{5}\)ର ଘନ = \(\left(2 \frac{3}{5}\right)^3=\left(\frac{13}{5}\right)^3=\frac{13^3}{5^3}=\frac{2197}{125}\)

(vi) \(3 \frac{1}{4}\)ର ଘନ = \(\left(3 \frac{1}{4}\right)^3=\left(\frac{13}{4}\right)^3=\frac{13^3}{4^3}=\frac{2197}{64}\)

(vii) \(-1 \frac{2}{3}\)ର ଘନ = \(\left(-1 \frac{2}{3}\right)^3=\left(-\frac{5}{3}\right)^3=\frac{(-5)^3}{3^3}=\frac{-125}{27}\)

(viii) 0.2ର ଘନ = \((0 \cdot 2)^3=\left(\frac{2}{10}\right)^3=\frac{2^3}{10^3}=\frac{8}{1000}=0.008\)

(ix) 1.3ର ଘନ = \((1 \cdot 3)^3=\left(\frac{13}{10}\right)^3=\frac{13^3}{10^3}=\frac{2197}{1000}=2 \cdot 197\)

(x) 0.03ର ଘନ = \((0 \cdot 03)^3=\left(\frac{3}{100}\right)^3=\frac{(3)^3}{(100)^3}=\frac{27}{1000000}=0 \cdot 000027\)

BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(h)

Question 2.
ଘନମୂଳ ନିର୍ଣ୍ଣୟ କର ।
(i) \(\frac{8}{125}\)
(ii) \(\frac{-64}{1331}\)
(iii) \(\frac{-27}{4096}\)
(iv) \(– \frac{2197}{9261}\)
(v) 0.001
(vi) 0.008
(vii) 1.728
(viii) 0.000125
ସମାଧାନ :
(i) \(\sqrt[3]{\frac{8}{125}}=\sqrt[3]{\frac{2^3}{5^3}}=\sqrt[3]{\left(\frac{2}{5}\right)^3}=\frac{2}{5}\)

(ii) \(\sqrt[3]{-\frac{64}{1331}}=\sqrt[3]{\frac{(-4)^3}{(11)^3}}=\sqrt[3]{\left(\frac{-4}{11}\right)^3}=\frac{-4}{11}\)

(iii) \(\sqrt[3]{\frac{-27}{4096}}=\sqrt[3]{\frac{(-3)^3}{(16)^3}}=\sqrt[3]{\left(\frac{-3}{16}\right)^3}=\frac{-3}{16}\)

(iv) \(\sqrt[3]{\frac{2197}{9261}}=\sqrt[3]{\frac{(13)^3}{(21)^3}}=\sqrt[3]{\left(\frac{13}{21}\right)^3}=\frac{13}{21}\)

(v) \(\sqrt[3]{0.001}=\sqrt[3]{\frac{1}{1000}}=\sqrt[3]{\frac{1^3}{10^3}}=\sqrt[3]{\left(\frac{1}{10}\right)^3}=\frac{1}{10}=0 \cdot 1\)

(vi) \(\sqrt[3]{0 \cdot 008}=\sqrt[3]{\frac{8}{1000}}=\sqrt[3]{\frac{2^3}{10^3}}=\sqrt[3]{\left(\frac{2}{10}\right)^3}=\frac{2}{10}=0 \cdot 2\)

(vii) \(\sqrt[3]{1 \cdot 728}=\sqrt[3]{\frac{1728}{1000}}=\sqrt[3]{\frac{12^3}{10^3}}=\sqrt[3]{\left(\frac{12}{10}\right)^3}=\frac{12}{10}=1 \cdot 2\)

(viii) \(\sqrt[3]{0 \cdot 000125}=\sqrt[3]{\frac{125}{1000000}}=\sqrt[3]{\frac{5^3}{(100)^3}}=\sqrt[3]{\left(\frac{5}{100}\right)^3}=\frac{5}{100}=0 \cdot 05\)

BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(h)

Question 3.
ନିମ୍ନୋକ୍ତ କେଉଁ ରାଶି କୌଣସି ଏକ ପରିମେୟ ସଂଖ୍ୟାର ଘନ ଅଟେ ?
(i) \(\frac{27}{64}\)
(ii) \(\frac{125}{128}\)
(iii) \(\frac{-216}{729}\)
(iv) \(– \frac{-250}{686}\)
(v) 0.08
(vi) 0.125
(vii) 0.1331
ସମାଧାନ :
(m, n ∈ Q ଏବଂ n = m³ ହେଲେ, n ଏକ ଘନ ସଂଖ୍ୟା ହେବ ।)
(i) \(\frac{27}{64}=\frac{3 \times 3 \times 3}{4 \times 4 \times 4}=\left(\frac{3}{4}\right)^3\) ଏହା ଏକ ପରିମେୟ ସଂଖ୍ୟାର ଘନ ।

(ii) \(\frac{125}{128}=\frac{5 \times 5 \times 5}{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2}=\frac{5^3}{2^3 \times 2^3 \times 2}\) ଏହା ଏକ ପରିମେୟ ସଂଖ୍ୟାର ଘନ ନୁହେଁ ।

(iii) \(\frac{-216}{729}=\frac{(-6) \times(-6) \times(-6)}{9 \times 9 \times 9}=\left(\frac{-6}{9}\right)^3\) ଏହା ଏକ ପରିମେୟ ସଂଖ୍ୟାର ଘନ ଅଟେ ।

(iv) \(– \frac{-250}{686}=\frac{-5 \times 5 \times 5 \times 2}{7 \times 7 \times 7 \times 2}=\left(\frac{-5}{7}\right)^3\) ଏହା ଏକ ପରିମେୟ ସଂଖ୍ୟାର ଘନ ନୁହେଁ ।

(v) 0.08 = \(\frac{8}{10}=\frac{2 \times 2 \times 2}{2 \times 5}=\frac{(2)^3}{2 \times 5}\) ଏହା ଏକ ପରିମେୟ ସଂଖ୍ୟାର ଘନ ଅଟେ ।

(vi) 0.125 = \(\frac{125}{1000}=\frac{5 \times 5 \times 5}{5 \times 5 \times 5 \times 2 \times 2 \times 2}=\frac{1}{2^3}=\left(\frac{1}{2}\right)^3\) ଏହା ଏକ ପରିମେୟ ସଂଖ୍ୟାର ଘନ ଅଟେ ।

(vii) 0.1331 = \(\frac{1331}{10000}=\frac{11 \times 11 \times 11}{10 \times 10 \times 10 \times 10}=\frac{11^3}{10^3 \times 10}\) ଏହା ଏକ ପରିମେୟ ସଂଖ୍ୟାର ଘନ ନୁହେଁ ।

BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(d)

Odisha State Board BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(d) Textbook Exercise Questions and Answers.

BSE Odisha Class 8 Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(d)

Question 1.
1000 ର ନିକଟତମ କେଉଁ ଦୁଇଟି ସଂଖ୍ୟା ପୂର୍ବବର୍ଗ ସଂଖ୍ୟା ଅଟେ ?
ସମାଧାନ :
1000 ର ବର୍ଗମୂଳ ପ୍ରଥମେ ନିରୂପଣ କରିବା ।
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(d) - 1
1000, 31ର ବର୍ଗଠାରୁ 39 ଅଧିକ ।
ଗୋଟିଏ ନିକଟତମ ପୂର୍ଣବର୍ଗ ସଂଖ୍ୟା = 1000 – 39 = 961
∴ ଅନ୍ୟ ନିକଟତମ ପୂର୍ଣବର୍ଗ ସଂଖ୍ୟାଟି = 322 = 1024
∴ 1000 ର ନିକଟବର୍ତୀ 961 ଓ 1024 ଦୁଇଟି ପୂର୍ଣବର୍ଗ ସଂଖ୍ୟା ।

BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(d)

Question 2.
ଗୋଟିଏ ସ୍କୁଲ୍‌ରେ ଯେତେ ଜଣ ଛାତ୍ର ଥିଲେ ପ୍ରତ୍ୟେକ ସେତୋଟି ଲେଖାଏଁ 50 ପଇଶି ଦେବାରୁ ମୋଟ 1250 ଟଙ୍କା ଚାନ୍ଦା ଅସୁଲ ହେଲା । ସ୍କୁଲର ଛାତ୍ର ସଂଖ୍ୟା କେତେ ?
ସମାଧାନ :
ମନେକର ସ୍କୁଲର ଛାତ୍ରସଂଖ୍ୟା x ।
ପ୍ରତ୍ୟେକ ଛାତ୍ର xଟି ଲେଖାଏଁ 50 ପଇଶି ଦେଲେ ହେବ = 50 x ପଇସା ।
x ଜଣ ଛାତ୍ର 50x ପଇସା ଦେଲେ ମୋଟ ପଇସାର ପରିମାଣ = 50x × x = 50x² ପଇସା ।
ମୋଟ ଆଦାୟ = 1250ଟଙ୍କା = 125000 ପଇସା ।
∴ ପ୍ରଶ୍ନନୁସାରେ 50x² = 125000 ⇒ x² = \(\frac{125000}{50}\) = 2500 = 50² ⇒ x = 50 (-18 ଗ୍ରହଣୀୟ ନୁହେଁ)
∴ ସ୍କୁଲରେ 50 ଜଣ ଛାତ୍ରଥିଲେ ।

Question 3.
ଏକ ଉଚ୍ଚ ଇଂରାଜୀ ସ୍କୁଲର ଛାତ୍ରମାନଙ୍କୁ ବର୍ଗାକାର ନକ୍ସାରେ ଠିଆ କରାଇବାରୁ 10 ରୁ କମ୍ ଛାତ୍ର ବଳି ପଡ଼ିଲେ । ସ୍କୁଲର ଛାତ୍ର ସଂଖ୍ୟା 1230 ଜଣ ହେଲେ, ପ୍ରତି ଧାଡ଼ିରେ କେତେ ଜଣ ଛାତ୍ର ଛିଡ଼ାହୋଇଥିଲେ ?
ସମାଧାନ :
ସ୍କୁଲର ଛାତ୍ର ସଂଖ୍ୟା = 1230
ପ୍ରଥମେ 1230ର ବର୍ଗମୂଳ ନିରୂପଣ କରିବା ।
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(d) - 2
ଏଠାରେ 1230, 35ରେ ବର୍ଗଠାରୁ 5 ଅଧ‌ିକ । 5 ମଧ୍ୟ 10 ଠାରୁ କ୍ଷୁଦ୍ରତର ।
ପ୍ରତି ଧାଡ଼ିରେ 35 ଜଣ ଛାତ୍ର ଛିଡ଼ାହୋଇଥିଲେ ।

Question 4.
6912 କେଉଁ କ୍ଷୁଦ୍ରତମ ସଂଖ୍ୟା ଦ୍ଵାରା ଭାଗ ବା ଗୁଣନକଲେ ଫଳ ଗୋଟିଏ ଲେଖାଏଁ ପୂର୍ବବର୍ଗ ସଂଖ୍ୟା ହେବ ?
ସମାଧାନ :
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(d) - 3
6912କୁ 3 ଦ୍ଵାରା ଭାଗକଲେ କିମ୍ବା ଗୁଣନକଲେ ସଂଖ୍ୟାଟି ଏକ ପୂର୍ଣବର୍ଗ ରାଶି ହେବ ।

Question 5.
କେଉଁ ସଂଖ୍ୟାର \(\frac{2}{3}\) ଓ \(\frac{7}{8}\) ର ଗୁଣଫଳ 1344 ଅଟେ ?
ସମାଧାନ :
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(d) - 4

BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(d)

Question 6.
ଗୋଟିଏ ଆୟତକ୍ଷେତ୍ରର ଦୈର୍ଘ୍ୟ, ପ୍ରସ୍ଥର 3ଗୁଣ । ଏହାର କ୍ଷେତ୍ରଫଳ 972 ବର୍ଗମିଟର ହେଲେ, ପରିସୀମା ନିର୍ଣ୍ଣୟ କର ।
ସମାଧାନ :
ମନେକର ଆୟତକ୍ଷେତ୍ରର ପ୍ରସ୍ଥ = xମି. । ଦୈର୍ଘ୍ୟ ପ୍ରସ୍ଥର ତିନିଗୁଣ ହେତୁ ଦୈର୍ଘ୍ୟ = 3x ମି
କ୍ଷେତ୍ରଫଳ = ଦୈର୍ଘ୍ୟ × ପ୍ରସ୍ଥ = 3x ମି. × xମି. = 3x² ବର୍ଗମିଟର
ପ୍ରଶ୍ନନୁସାରେ 3×2 = 972 ⇒ x² = \(\frac{972}{3}\) = 324
⇒ x= ±√324 = 18 (-18 ଗ୍ରହଣୀୟ ନୁହେଁ)
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(d) - 5
∴ ଆୟତକ୍ଷେତ୍ରଟିର ପ୍ରସ୍ଥ = 18 ମି.
ଆୟତକ୍ଷେତ୍ରଟିର ଦୈର୍ଘ୍ୟ = 3 × 18 ମି.
∴ ଏହାର ପରିସୀମା = 2(ଦୈର୍ଘ୍ୟ + ପ୍ରସ୍ଥ) = 2 (54 + 18 ) = 2 × 72 ମି. = 144 ମି.

Question 7.
ଗୋଟିଏ ଆୟତକ୍ଷେତ୍ରର ଦୈର୍ଘ୍ୟ ପ୍ରସ୍ଥର ଦେଢ଼ଗୁଣ । ଏହାର କ୍ଷେତ୍ରଫଳ 1350 ବର୍ଗମିଟର ହେଲେ, ଏହାର ପରିସୀମା ନିର୍ଣ୍ଣୟ କର ।
ସମାଧାନ :
ମନେକର ଆୟତକ୍ଷେତ୍ରର ପ୍ରସ୍ଥ = 2x ମି. ଓ ଦୈର୍ଘ୍ୟ = 2x × \(\frac{3}{2}\)ମିଟର = 3xମିଟର ।
∴ କ୍ଷେତ୍ରଫଳ = ଦୈର୍ଘ୍ୟ × ପ୍ରସ୍ଥ = 3x ମି. × 2x ମି.= 6x² ବର୍ଗମିଟର
ପ୍ରଶ୍ନନୁସାରେ 6x² = 1350 ⇒ x² = \(\frac{1350}{6}\) = 225 ⇒ x = √225 = 15 (-15 ଗ୍ରହଣୀୟ ନୁହେଁ)
କ୍ଷେତ୍ରର ପରିସୀମା = 2 (ଦୈର୍ଘ୍ୟ + ପ୍ରସ୍ଥ ) = 2 (3x + 2x) ମି. = 10x . = 10 × 15 ମି. = 150 ମି.
∴ ଆୟତକ୍ଷେତ୍ରର ପରିସୀମା 150 ମିଟର ।

BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(d)

Question 8.
ଜଣେ ଲୋକ ତାହାର 400 ଓ 441 ବର୍ଗମିଟରର ଦୁଇଟି ବର୍ଗାକାର ଜମି ବଦଳରେ ଗୋଟିଏ ବର୍ଗାକାର ଜମି କିଣିଲା । ଏଥୁରେ ତାର ବାଡ଼ ଦେବା ଖର୍ଚ୍ଚ ମିଟର ପ୍ରତି 5 ଟଙ୍କା ହିସାବରେ କେତେ ଖର୍ଚ୍ଚ ହେବ ?
ସମାଧାନ :
ବର୍ଗାକାର ଜମି ଦୁଇଟିର କ୍ଷେତ୍ରଫଳ = 400 ବ. ମି. + 441 ବ. ମି. = 841 ବ. ମି.
ବର୍ଗାକାର ଜମିର ବାହୁର ଦୈର୍ଘ୍ୟ = √841 ମି. = 29 ମି.
∴ ବର୍ଗାକାର ଜମିର ପରିସୀମା = 4 × 29 ମି. = 116 ମି.
1 ମିଟରକୁ ତାର ବାଡ଼ ଦେବାରେ ଖର୍ଚ୍ଚ ହୁଏ 5 ଟଙ୍କା
116 ମିଟରକୁ ତାର ବାଡ଼ ଦେବାରେ ଖର୍ଚ୍ଚ ହେବ = 116 × 5 ଟଙ୍କା = 580 ଟଙ୍କା ।
∴ ବର୍ଗାକାର ଜମିରେ ତାରବାଡ଼ ଦେବାରେ 580 ଟଙ୍କା ଖର୍ଚ୍ଚ ହେବ ।

Question 9.
ଗୋଟିଏ ଛାତ୍ରାବାସରେ ଯେତେ ଜଣ ଛାତ୍ର ଥିଲେ ପ୍ରତ୍ୟେକେ, ଛାତ୍ର ସଂଖ୍ୟାର 5 ଗୁଣ ଲେଖାଏଁ ଟଙ୍କା ମେସ୍ ଖର୍ଜ ଦେବାରୁ ମୋଟ 72000 ଟଙ୍କା ଅସୁଲ ହେଲା । ଛାତ୍ର ସଂଖ୍ୟା ନିର୍ଣ୍ଣୟ କର ।
ସମାଧାନ :
ମନେକର ଛାତ୍ରାବାସରେ x ଜଣ ଛାତ୍ର ଥିଲେ । ପ୍ରତ୍ୟେକ ମେସ୍ ଖର୍ଚ୍ଚ ଦେଲେ
ମୋଟ ମେସ୍ ଖର୍ଚ୍ଚର ପରିମାଣ = x × 5x ଟଙ୍କା = 5x²
ପ୍ରଶ୍ନନୁସାରେ 5x² = 72000 ⇒ x² = \(\frac{72000}{5}\) = 14400 ⇒ x = √14400 = 120
∴ ଛାତ୍ରାବାସରେ ଛାତ୍ରସଂଖ୍ୟା 120

Question 10.
18265 ରୁ କେଉଁ କ୍ଷୁଦ୍ରତମ ସଂଖ୍ୟା ବିୟୋଗକଲେ, ବିୟୋଗଫଳ ଏକ ପୂର୍ଣବର୍ଗ ସଂଖ୍ୟା ହେବ ?
ସମାଧାନ :
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(d) - 6
18265 ସଂଖ୍ୟାଟି 135 ର ବର୍ଗଠାରୁ 40 ଅଧ୍ଵ ।
∴ 18265ରୁ 40 ବିୟୋଗ କଲେ, ବିୟୋଗଫଳ ଏକ ପୂର୍ବବର୍ଗ ସଂଖ୍ୟା ହେବ ।

BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(d)

Question 11.
4515600 ରେ କେଉଁ କ୍ଷୁଦ୍ରତମ ସଂଖ୍ୟା ଯୋଗକଲେ, ଯୋଗଫଳ ଏକ ପୂର୍ବବର୍ଗ ସଂଖ୍ୟା ହେବ ?
ସମାଧାନ :
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(d) - 7
ଉପରୋକ୍ତ ଭାଗକ୍ରିୟାରୁ ଜଣାଗଲା ଯେ, 21242, ଦତ୍ତ
ସଂଖ୍ୟାଠାରୁ କ୍ଷୁଦ୍ରତର । କିନ୍ତୁ 21252, 4515600 ଠାରୁ ବୃହତ୍ତର ।
ସମାଧାନ :
ଉପରୋକ୍ତ ଭାଗକ୍ରିୟାରୁ ଜଣାଗଲା ଯେ, 2124², ଦତ୍ତ ସଂଖ୍ୟାଠାରୁ କ୍ଷୁଦ୍ରତର । କିନ୍ତୁ 2125², 4515600 ଠାରୁ ବୃହତ୍ତର ।
¤ ସଂଖ୍ୟାଟି = 2125² – 4515600
= 4515625 – 4515600 = 25
ସଂଖ୍ୟାଟିରେ 25 ଯୋଗକଲେ ଯୋଗଫଳ ଏକ ପୂର୍ଣବର୍ଗ ସଂଖ୍ୟା ହେବ ।

Question 12.
ଗୋଟିଏ ବର୍ଗାକାର ପଡ଼ିଆର କ୍ଷେତ୍ରଫଳ 133.6336 ବ.ମି. ହେଲେ, ପଡ଼ିଆର ପରିସୀମା କେତେ ?
ସମାଧାନ :
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(d) - 8
ବର୍ଗାକାର ପଡ଼ିଆର କ୍ଷେତ୍ରଫଳ = 133.6336 ବ.ମି.
ଏହାର ବାହୁର ଦୈର୍ଘ୍ୟ = √133.6336 ମି. = 11.56 ମି.
∴ ବର୍ଗାକାର ପଡ଼ିଆର ପରିସୀମା = 4 ×11.56 ମି. = 46.24 ମିଟର ।

BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c)

Odisha State Board BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c) Textbook Exercise Questions and Answers.

BSE Odisha Class 8 Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c)

Question 1.
ବନ୍ଧନୀ ମଧ୍ଯରୁ ଠିକ୍ ଉତ୍ତରଟି ବାଛି ଶୂନ୍ୟସ୍ଥାନ ପୂରଣ କର ।
(a) 0.36 ର ବର୍ଗମୂଳଟି …………….. । (6.0, 0.6, .06, .006)
(b) 1.21 ର ବର୍ଗମୂଳଟି …………….. । (0.11, 1.01. 1.1, 1.001)
(c) \(1 \frac{7}{9}\) ର ବର୍ଗମୂଳଟି …………….. । (\(1 \frac{1}{3}, 1 \frac{2}{3}, \frac{4}{9}, \frac{7}{3}\))
(d) 00009 ର ବର୍ଗମୂଳଟି …………….. । (0.3, 0.03, 0.003, 0.0003)
(e) \(6 \frac{1}{4}\) ର ବର୍ଗମୂଳଟି …………….. । (\(1 \frac{1}{2}, 2 \frac{1}{2}, 3 \frac{1}{2}, 4 \frac{1}{2}\))
ଉ –
(a) 0.6
(b) 1.1
(c) \(1 \frac{1}{3}\)
(d) 0.03
(e) \(2 \frac{1}{2}\)

BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c)

Question 2.
ବର୍ଗମୂଳ ନିର୍ଣ୍ଣୟ କର ।
289, 361, 784, 6.25, 12.96, 19.36, 10.24
ସମାଧାନ :
(i)
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c) - 1
(ii)
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c) - 2

BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c)

(iii)
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c) - 3
(iv)
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c) - 4
(v)
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c) - 5
(vi)
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c) - 6
(vii)
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c) - 7

BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c)

Question 3.
ଭାଗକ୍ରିୟା ସାହାଯ୍ୟରେ ବର୍ଗମୂଳ ନିର୍ଣ୍ଣୟ କର :
93025, 99856, 108241, 74529, 2256004, 1879641, 53361
(i)
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c) - 8
(ii)
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c) - 9
(iii)
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c) - 10

BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c)

(iv)
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c) - 11
(v)
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c) - 12
(vi)
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c) - 13
(vii)
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c) - 14

Question 4.
ଦତ୍ତ ଦଶମିକ ବର୍ଗ ସଂଖ୍ୟାର ବର୍ଗମୂଳ ନିର୍ଣ୍ଣୟ କର :
(i) 53.1441, (ii) 36.3609, (iii) 4.401604, (iv) 0.9801 3 (v) 5.4756
ସମାଧାନ :
(i) 53.1441 ର ବର୍ଗମୂଳ
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c) - 15

(ii) 36.3609 ର ବର୍ଗମୂଳ
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c) - 16

(iii) 4.401604 ର ବର୍ଗମୂଳ = \(\pm \sqrt{4 \cdot 401604}=\pm \sqrt{\frac{4401604}{1000000}}\)
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c) - 17

(iv) 0.9801 ର ବର୍ଗମୂଳ
\(\pm \sqrt{0 \cdot 9801}=\pm \sqrt{\frac{9801}{10000}}=\pm \frac{\sqrt{9801}}{\sqrt{10000}}\)
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c) - 18

(v) 5.4756 ର ବର୍ଗମୂଳ
\(=\pm \sqrt{5 \cdot 4756}=\pm \sqrt{\frac{54756}{10000}}\)
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c) - 19

BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c)

Question 5.
ଦତ୍ତ ସଂଖ୍ୟାର ବର୍ଗମୂଳ ଆସନ୍ନ ଦଶମିକ ତିନି ସ୍ଥାନ ପର୍ଯ୍ୟନ୍ତ ନିର୍ଣ୍ଣୟ କର ।
(i) 5 (ii) 7 (iii) 10 (iv) 2-5 (v) 3.6
ସମାଧାନ :
(i) 5 ର ବର୍ଗମୂଳ = 5-000000 ର ବର୍ଗମୂଳ ଅର୍ଥାତ୍ ± \(\sqrt{5.000000}\) ର ଆସନ୍ନମାନ ସ୍ଥିର କରିବାକୁ ହେବ ।
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c) - 20
∴ 5 ର ଆସନ୍ନ ବର୍ଗମୂଳ = ± (2.236)
(ବି.ଦ୍ର. : ଦଶମିକ ତିନି ସ୍ଥାନ ପର୍ଯ୍ୟନ୍ତ ବର୍ଗମୂଳ ସ୍ଥିର ପର୍ଯ୍ୟନ୍ତ ସଂଖ୍ୟାକୁ ନିଆଯାଇଛି ।)

(ii) 7 ର ବର୍ଗମୂଳ = 7.000000 ର ବର୍ଗମୂଳ ଅର୍ଥାତ୍ ± \(\sqrt{7.000000}\) ର ଆସନ୍ନମାନ ସ୍ଥିର କରିବାକୁ ହେବ ।
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c) - 21
∴ 7 ର ଆସନ୍ନ ବର୍ଗମୂଳ = ± (2.645)

(iii) 10 ର ବର୍ଗମୂଳ = 10.000000 ର ବର୍ଗମୂଳ ଅର୍ଥାତ୍ ± \(\sqrt{10.000000}\) ର ଆସନ୍ନମାନ ସ୍ଥିର କରିବାକୁ ହେବ ।
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c) - 22
∴ 10 ର ଆସନ୍ନ ବର୍ଗମୂଳ = ± (3.162)

(iv) 2.5 ର ବର୍ଗମୂଳ = 2.500000 ର ବର୍ଗମୂଳ ଅର୍ଥାତ୍ ± \(\sqrt{2.500000}\) ର ଆସନ୍ନମାନ ସ୍ଥିର କରିବାକୁ ହେବ ।
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c) - 23
∴ 2.5 ର ଆସନ୍ନ ବର୍ଗମୂଳ = ± (1.581)

BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c)

(v) 3.6 ର ବର୍ଗମୂଳ = 3.600000 ର ବର୍ଗମୂଳ ଅର୍ଥାତ୍ ± \(\sqrt{3.600000}\) ର ଆସନ୍ନମାନ ସ୍ଥିର କରିବାକୁ ହେବ ।
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c) - 24.1
∴ 3.6 ର ଆସନ୍ନ ବର୍ଗମୂଳ = ± (1.987)

Question 6.
ଦଶମିକ ତିନି ସ୍ଥାନ ପର୍ଯ୍ୟନ୍ତ ଆସନ୍ନ ବର୍ଗମୂଳ ନିର୍ଣ୍ଣୟ କର ।
\(1 \frac{1}{4}, 2 \frac{7}{9}, 4 \frac{1}{16}, 3 \frac{7}{25} \text { ଓ } 4 \frac{9}{16}\)
ସମାଧାନ :
(i) \(1 \frac{1}{4}\) ର ଆସନ୍ନ ବର୍ଗମୂଳ = \(\pm \sqrt{1 \frac{1}{4}}=\pm \sqrt{\frac{5}{4}}=\frac{\pm \sqrt{5}}{2}=\pm \frac{2 \cdot 2360}{2}=1 \cdot 118\)
(5ରେ ବର୍ଗମୂଳ Q.5 (i)ରେ ନିରୂପଣ କରାଯାଇଛି)

(ii) \(2 \frac{7}{9}\) ର ଆସନ୍ନ ବର୍ଗମୂଳ = \(\pm \sqrt{2 \frac{7}{9}}=\pm \sqrt{\frac{25}{9}}=\pm \frac{5}{3}=\pm 1 \cdot 667\)

(iii) \(4 \frac{7}{9}\) ର ଆସନ୍ନ ବର୍ଗମୂଳ = \(\pm \sqrt{\frac{65}{16}}=\pm \frac{\sqrt{65}}{\sqrt{16}}=\pm \frac{\sqrt{65}}{4}\)
∴ \(\pm \sqrt{65}=\pm 8 \cdot 062\)
∴ \(\pm \sqrt{4 \frac{1}{16}}=\pm \frac{\sqrt{65}}{4}=\pm \frac{8 \cdot 062}{4}=\pm 2 \cdot 015\)
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c) - 24

BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c)

(iv)
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c) - 25

(v)
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c) - 26

Question 7.
(i) √2 = 1.414 ହେଲେ, \(\frac{5}{\sqrt{2}}\) ର ମାନ ନିର୍ଣ୍ଣୟ କର ।
ସମାଧାନ :
\(\frac{5}{\sqrt{2}}=\frac{5\sqrt{2}}{\sqrt{2}.\sqrt{2}}\)
(ପରିମେୟ ହରବିଶିଷ୍ଟ ରାଶିରେ ପରିଣତ କରିବାପାଇଁ ଉଭୟ ଲବ ଓ ହରକୁ √2 ରେ ଗୁଣାଗଲା ।)
= \(\frac{5 \times(1.414)}{2}\) [∵ √2 = 1·414]
= \(\frac{7.070}{2}=3.535\)

(ii) √3 = 1.732 ହେଲେ, \(\frac{8}{3\sqrt{3}}\) ର ମାନ ନିର୍ଣ୍ଣୟ କର ।
ସମାଧାନ :
\(\frac{8 \sqrt{3}}{3 \sqrt{3} \cdot \sqrt{3}}\)
(ପରିମେୟ ହର ବିଶିଷ୍ଟ ରାଶିରେ ପରିଣତ କରିବାପାଇଁ ଉଭୟ ଲବ ଓ ହରକୁ √3 ରେ ଗୁଣାଗଲା)
= \(\frac{8 \sqrt{3}}{9}=\frac{8 \cdot(1 \cdot 732)}{9}\) [∵ √3 = 1·732]
= \(\frac{13 \cdot 856}{9}=1 \cdot 539\)

BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c)

(iii) √3 = 1.732 ହେଲେ, \(\frac{\sqrt{3}+1}{\sqrt{3}-1}\) ର ମାନ ନିର୍ଣ୍ଣୟ କର ।
ସମାଧାନ :
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c) - 27

(iv) √6 = 2.449 ହେଲେ, \(\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}\) ର ମାନ ନିର୍ଣ୍ଣୟ କର ।
ସମାଧାନ :
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c) - 28

(iv) √6 = 2.449 ହେଲେ, \(\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\) ର ମାନ ନିର୍ଣ୍ଣୟ କର ।
ସମାଧାନ :
BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(c) - 29

BSE Odisha 8th Class Maths Solutions Geometry Chapter 4 ଅଙ୍କନ Ex 4(h)

Odisha State Board BSE Odisha 8th Class Maths Solutions Geometry Chapter 4 ଅଙ୍କନ Ex 4(h) Textbook Exercise Questions and Answers.

BSE Odisha Class 8 Maths Solutions Geometry Chapter 4 ଅଙ୍କନ Ex 4(h)

Question 1.
4 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଏକ ବୃତ୍ତ ମଧ୍ଯରେ ଗୋଟିଏ ସମବାହୁ ତ୍ରିଭୁଜ ଅନ୍ତର୍ଲିଖନ କର ।
Solution:
(i) O କୁ କେନ୍ଦ୍ର ନେଇ 4 ସେ.ମି. ବ୍ୟାସାର୍ଷ ବିଶିଷ୍ଟ ଏକ ବୃତ୍ତ ଅଙ୍କନ କର ।
(ii) ବୃତ୍ତ ଉପରେ ଯେ କୌଣସି ଗୋଟିଏ ବିନ୍ଦୁ ନେଇ ତାହାର ନାମ A ଦିଅ ।
BSE Odisha 8th Class Maths Solutions Geometry Chapter 4 Img 34
(iii) A କୁ କେନ୍ଦ୍ର କରି 4 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ନେଇ ଗୋଟିଏ ଚାପ ଅଙ୍କନ କର । ଏହି ଚାପ ବୃତ୍ତକୁ ଛେଦ କରୁଥିବା ଗୋଟିଏ ବିନ୍ଦୁର ନାମ B ଦିଅ । ପୁଣି B କୁ କେନ୍ଦ୍ରକରି ପୂର୍ବ ବ୍ୟାସାର୍ଡ଼ ବିଶିଷ୍ଟ ଚାପ ଅଙ୍କନ କର । ତାହା ବୃତ୍ତକୁ ଯେଉଁ ବିନ୍ଦୁରେ ଛେଦକରେ (A ଭିନ୍ନ ଅନ୍ୟ ଏକ ବିନ୍ଦୁ) ତାହାର ନାମ C ଦିଅ । ଏହି କ୍ରମରେ ବୃତ୍ତ ଉପରେ D, E, F ବିନ୍ଦୁ ନିର୍ଣ୍ଣୟ କର ।
(iv) ବିନ୍ଦୁଗୁଡ଼ିକୁ ଗୋଟିଏ ଛଡ଼ା ଗୋଟିଏ (ଯେପରି A, C, E) ନେଇ ରେଖାଖଣ୍ଡ ଅଙ୍କନ କର (ଯେପରି AC, CE, EA ) । ଏ କ୍ଷେତ୍ରରେ △ACE ଆବଶ୍ୟକ ବୃତ୍ତାନ୍ତର୍ଲିଖ ସମବାହୁ ତ୍ରିଭୁଜ ।

Question 2.
4 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ବୃତ୍ତରେ ଏକ ବର୍ଗଚିତ୍ର ଅନ୍ତର୍ଲିଖନ କର ।
Solution:
(i) O କୁ କେନ୍ଦ୍ର ନେଇ 4 ସେ.ମି. ବ୍ୟାସାର୍କ ବିଶିଷ୍ଟ ଏକ ବୃତ୍ତ ଅଙ୍କନ କର ।
(ii) ବୃତ୍ତ ଉପରେ ଯେ କୌଣସି ଏକ ବିନ୍ଦୁ A ନେଇ \( \overrightarrow{\mathrm{AO}}\) ଅଙ୍କନ କର । ତାହା ବୃତ୍ତକୁ ଛେଦକରୁଥ‌ିବା ବିନ୍ଦୁର ନାମ C ଦିଅ। AC ବୃତ୍ତର ଗୋଟିଏ ବ୍ୟାସ ।
BSE Odisha 8th Class Maths Solutions Geometry Chapter 4 Img 35
(iii) \( \overrightarrow{\mathrm{OX}}\) ଅଙ୍କନ କର । ଯେପରି ∠AOX ଏକ ସମକୋଣ ହେବ। \( \overrightarrow{\mathrm{OX}}\) ଓ ବୃତ୍ତର ଛେଦବିନ୍ଦୁର ନାମ B ଦିଅ ।
(iv) \( \overrightarrow{\mathrm{BO}}\) ଅଙ୍କନ କର । ତାହା ବୃତ୍ତକୁ ଛେଦକରୁଥିବା ବିଦୁର ନାମ D ଦିଅ | \(\overline{\mathrm{BD}})\) ବୃତ୍ତର ଆଉ ଗୋଟିଏ ବ୍ୟାସ, ଯେପରି \(\overline{\mathrm{AC}})\) ⊥ \(\overline{\mathrm{BD}})\) | ABCD ଆବଶ୍ୟକ ବୃତ୍ତାନ୍ତର୍ଲିଖ ବର୍ଗଚିତ୍ର ।

BSE Odisha 8th Class Maths Solutions Geometry Chapter 4 ଅଙ୍କନ Ex 4(h)

Question 3.
10 ସେ.ମି. ବ୍ୟାସ ବିଶିଷ୍ଟ ବୃତ୍ତରେ ଏକ ସୁଷମ ଷଡ଼ଭୁଜ ଅନ୍ତର୍ଲିଖନ କର ।
Solution:
(i) O କୁ କେନ୍ଦ୍ର ନେଇ 5 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଏକ ବୃତ୍ତ ଅଙ୍କନ କର ।
(ii) ବୃତ୍ତ ଉପରେ ଯେ କୌଣସି ଗୋଟିଏ ବିନ୍ଦୁ ନେଇ ତାହାର ନାମ A ଦିଅ ।
BSE Odisha 8th Class Maths Solutions Geometry Chapter 4 Img 36
(iii) A କୁ କେନ୍ଦ୍ର କରି 5 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ନେଇ ଗୋଟିଏ ଚାପ ଅଙ୍କନ କର । ଏହି ଚାପ ବୃତ୍ତକୁ ଛେଦ- କରୁଥିବା ଗୋଟିଏ ବିନ୍ଦୁର ନାମ B ଦିଅ । ପୁଣି B କୁ କେନ୍ଦ୍ରକରି ପୂର୍ବ ବ୍ୟାସାର୍ଷ ବିଶିଷ୍ଟ ଚାପ ଅଙ୍କନ କର । ତାହା ବୃତ୍ତକୁ ଯେଉଁ ବିନ୍ଦୁରେ ଛେଦକରେ (A ଭିନ୍ନ ଅନ୍ୟ ଏକ ବିନ୍ଦୁ) ତାହାର ନାମ C ଦିଅ । ଏହି କ୍ରମରେ ବୃତ୍ତ ଉପରେ D, E, F ବିନ୍ଦୁ ନିର୍ଣ୍ଣୟ କର ।
(iv) AB, BC, CD, DE, EF,FA ଛେଦକରୁଥ‌ିବା ଅଙ୍କନ କର । ABCDEF ରତିୟ ପରାନ୍ତଳଖଣ ପ୍ରକମ ଷଡ଼ଭୁଜ ।

BSE Odisha 8th Class Maths Solutions Geometry Chapter 4 ଅଙ୍କନ Ex 4(g)

Odisha State Board BSE Odisha 8th Class Maths Solutions Geometry Chapter 4 ଅଙ୍କନ Ex 4(g) Textbook Exercise Questions and Answers.

BSE Odisha Class 8 Maths Solutions Geometry Chapter 4 ଅଙ୍କନ Ex 4(g)

Question 1.
ABCD ଚତୁର୍ଭୁଜ ଅଙ୍କନ କର, ଯାହାର AB = 3.5 ସେ.ମି., BC = 5.5 ସେ.ମି., CD = 5 ସେ.ମି. ଏବଂ m∠B = 120°, m∠C = 90° |
Solution:
BSE Odisha 8th Class Maths Solutions Geometry Chapter 4 Img 30
(i) 5.5 ସେ.ମି. ଦୈର୍ଘ୍ୟ` ବିଶିଷ୍ଟ BC ଅଙ୍କନ କର ।
(ii) B ବିନ୍ଦୁରେ \( \overrightarrow{\mathrm{BX}}\) ଅଙ୍କନ କର, ଯେପରିକି m∠XBC = 120° ହେବ ।
(iii) C ବିନ୍ଦୁରେ \( \overrightarrow{\mathrm{CY}}\) ଅଙ୍କନ କର, ଯେପରିକି m∠YCB = 90° ହେବ ।
(iv) \( \overrightarrow{\mathrm{BX}}\) ରୁ \( \overrightarrow{\mathrm{BA}}\) = 3.5 ସେ.ମି. ଅଂଶ ଛେଦନ କର ଏବଂ \( \overrightarrow{\mathrm{CY}}\) ରୁ CD = 5 ସେ.ମି. ଅଂଶ ଛେଦନ କରି \( \overrightarrow{\mathrm{BX}}\) ଏବଂ \( \overrightarrow{\mathrm{CY}}\) ଉପରେ ଯଥାକ୍ରମେ A ଓ D ବିନ୍ଦୁ ସ୍ଥାପନ କର ।
(v) A, D କୁ ଯୋଗ କରି ABCD ଚତୁର୍ଭୁଜ ସଂପୂର୍ଣ୍ଣ କର ।

Question 2.
PORS ଚତୁର୍ଭୁଜ ଅଙ୍କନ କର, ଯେପରିକି PQ = QR = 3 ସେ.ମି., PS = 5 ସେ.ମି., m∠P = 90°, m∠Q= 105° |
Solution:
(i) 3 ସେ.ମି. ଦୈର୍ଘ୍ୟ ବିଶିଷ୍ଟ PQ ରେଖାଖଣ୍ଡ ଅଙ୍କନ କର ।
(ii) P ବିନ୍ଦୁରେ \( \overrightarrow{\mathrm{PX}}\) ଅଙ୍କନ କର, ଯେପରିକି m∠XPQ = 90° ହେବ ।
(iii) Q ବିନ୍ଦୁରେ \( \overrightarrow{\mathrm{QY}}\) ଅଙ୍କନ କର, ଯେପରିକି m∠YQP = 105° ହେବ ।
BSE Odisha 8th Class Maths Solutions Geometry Chapter 4 Img 31
(iv) \( \overrightarrow{\mathrm{PX}}\) ରୁ PS = 5 ସେ.ମି. ଅଂଶ ଛେଦନ କର ଏବଂ \( \overrightarrow{\mathrm{QY}}\) ରୁ QR = 3 ସେ.ମି. ଅଂଶ ଛେଦନ କରି \( \overrightarrow{\mathrm{BX}}\) ଏବଂ \( \overrightarrow{\mathrm{CY}}\) ଉପରେ ଯଥାକ୍ରମେ S ଓ R ବିନ୍ଦୁ ସ୍ଥାପନ କର ।
(v) S, R କୁ ଯୋଗକରି PORS ଚତୁର୍ଭୁଜ ସଂପୂର୍ଣ୍ଣ କର ।

BSE Odisha 8th Class Maths Solutions Geometry Chapter 4 ଅଙ୍କନ Ex 4(g)

Question 3.
PORS ଚତୁର୍ଭୁଜ ଅଙ୍କନ କର, ଯହିଁରେ m∠Q = 45°, m∠R = 90°, PQ = 5.5 ସେ.ମି., QR = 5 ସେ.ମି. ଏବଂ RS = 4 ସେ.ମି. |
Solution:
(i) 5 ସେ.ମି., ଦଣ QR ରେଖାଖଣ ଅନନ କର |
(ii) Q ଏବଂ R ଚତୁର୍ଭୁଜ ଯଥାକ୍ତମେ 45° ଏବଂ 90° ପରିମାଣ ବିଶିଷ ∠XQR ଏବଂ ∠YRQ ଅନନ କର |
BSE Odisha 8th Class Maths Solutions Geometry Chapter 4 Img 32
(iii) \( \overrightarrow{\mathrm{QX}}\) ରୁ QP = 9 ସେ.ମି. ଅଂଶ ଛେଦନ କର ଏବଂ \( \overrightarrow{\mathrm{RY}}\) ରୁ RS = 7 ସେ.ମି. ଅଂଶ ଛେଦନ କରି QX ଏବଂ \(\overline{\mathrm{RY}})\) ଉପରେ ଯଥାକ୍ରମେ P ଏବଂ S ବିନ୍ଦୁ ଚିହ୍ନଟ କର ।
(iv) P, S କୁ ଯୋଗକରି ଚତୁର୍ଭୁଜଟି ସଂପୂର୍ଣ୍ଣ କର ।

Question 4.
ABCD ଟ୍ରାପିଜିୟମ୍ ଅଙ୍କନ କର, ଯେପରି \(\overline{\mathrm{AD}})\)||\(\overline{\mathrm{BC}})\), AB = 3.8 ସେ.ମି., BC = 6 ସେ.ମି., CD = 4 ସେ.ମି. ଏବଂ m∠B = 60° |
Solution:
ABCD ଟ୍ରାପିଜିୟମ୍‌ରେ AD||BC
⇒ m∠B + m∠C = 180°
⇒ m∠C = 180° – m∠B
= 180° – 60° = 120°]
BSE Odisha 8th Class Maths Solutions Geometry Chapter 4 Img 33
(i) 6 ସେ.ମି. ଦୀର୍ଘ BC ରେଖାଖଣ୍ଡ ଅଙ୍କନ କର ।
(ii) B ବିନ୍ଦୁରେ \( \overrightarrow{\mathrm{BX}}\) ଅଙ୍କନ କର, ଯେପରିକି m∠XBC = 60° ହେବ ।
(iii) C ବିନ୍ଦୁରେ \( \overrightarrow{\mathrm{CY}}\) ଅଙ୍କନ କର, ଯେପରିକି m∠YCB = 120° ହେବ ।
(iv) \( \overrightarrow{\mathrm{BX}}\) ରୁ BA = 3.8 ସେ.ମି. ଅଂଶ ଛେଦନ କର ଏବଂ \( \overrightarrow{\mathrm{CY}}\) ରୁ CD = 4 ସେ.ମି. ଅଂଶ ଛେଦନ କରି \( \overrightarrow{\mathrm{BX}}\) ଓ \( \overrightarrow{\mathrm{CY}}\) ଉପରେ ଯଥାକ୍ରମେ A ଓ D ବିନ୍ଦୁ ସ୍ଥାପନ କର ।
(v) A, D କୁ ଯୋଗ କରି ABCD ଟ୍ରାପିଜିୟମ୍ ସଂପୂର୍ଣ୍ଣ କର ।

BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(e)

Odisha State Board BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(e) Textbook Exercise Questions and Answers.

BSE Odisha Class 8 Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(e)

Question 1.
11 ଠାରୁ 20 ପର୍ଯ୍ୟନ୍ତ ସମସ୍ତ ଗଣନ ସଂଖ୍ୟାର ଘନ ନିର୍ଣ୍ଣୟ କର ।
ସମାଧାନ :
11³ = 11 × 11 × 11 = 1331
12³ = 12 × 12 × 12 = 1728
13³ = 13 × 13 × 13 = 2197
14³ = 14 × ¡4 × 14 = 2744
15³ = 15 × 15 × 15 = 3375
16³ = 16 × 16 × 16 = 4096
17³ = 17 × 17 × 17 = 4913
18³ = 18 × 18 × 18 = 5832
19³ = 19 × 19 × 19 = 6859
20³ = 20 × 20 × 20 = 8000

BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(e)

Question 2.
ଶୂନ୍ୟସ୍ଥାନ ପୂରଣ କର ।
(i) (3)³ × (4)³ = (……..)³
(iii) (12)³ × (5)³ = ( …….)³
(iii) (5)³ × (11)³ = (…….)³
(iv) 6³ = 2³ × (……)³
(v) (15)³ = (…….)³ × (5)³
ସମାଧାନ :
a³b³ = (ab)³
(i) 12
(ii) 55
(iii) 60
(iv) 3
(v) 3

Question 3.
ନିମ୍ନଲିଖତ ସଂଖ୍ୟାଗୁଡ଼ିକ ମଧ୍ୟରୁ କେଉଁଗୁଡ଼ିକ ଘନ ସଂଖ୍ୟା ?
54, 216, 243, 218, 1331, 106480
ସମାଧାନ :
n = m³ ହେଲେ, m, n ∈ N
n ଏକ ଘନସଂଖ୍ୟା ହେବ ।
54 = 3 × 3 × 3 × 2 = (3)³ × 2
ଉତ୍ପାଦକୀକରଣଦ୍ଵାରା ସଂଖ୍ୟାଟି n³ ରୂପେ ପ୍ରକାଶିତ ହେଲା ନାହିଁ; ତେଣୁ 54 ଏକ ଘନସଂଖ୍ୟା ନୁହେଁ ।

216 = 2 × 2 × 2 × 3 × 3 × 3 = (2)³ × (3)³ = (2 × 3)³ = (6)³
ଉତ୍ପାଦକୀକରଣଦ୍ୱାରା 216, n³ ଅର୍ଥାତ୍ (6)³ ଆକାରରେ ପ୍ରକାଶିତ ହେଲା, ତେଣୁ 216 ଏକ ଘନସଂଖ୍ୟା ।

243 = 3 × 3 × 3 × 3 × 3 = (3)³ × 3 × 3
ଉତ୍ପାଦକୀକରଣ ଦ୍ବାରା 243, n³ ଆକାରରେ ପ୍ରକାଶିତ ହେଲା ନାହିଁ । ତେଣୁ 243 ଘନସଂଖ୍ୟା ନୁହେଁ ।

218 = 2 × 109
ଉତ୍ପାଦକୀକରଣ ଦ୍ବାରା ଏହା n³ ଆକାରରେ ପ୍ରକାଶିତ ହେଲା ନାହିଁ । ତେଣୁ 218 ଘନସଂଖ୍ୟା ନୁହେଁ ।

1331 = 11 × 11 × 11 = (11)³
ଉତ୍ପାଦକୀକରଣ ଦ୍ବାରା 1331, n³ ଅର୍ଥାତ୍ (11)³ ଆକାରରେ ପ୍ରକାଶିତ ହେଲା, ତେଣୁ 1331 ଏକ ଘନ ସଂଖ୍ୟା ।

106480 = 2 × 2 × 2 × 2 × 11 × 11 × 11 × 5 = (2)³ × (11)³ × 2 × 5
ଉତ୍ପାଦକୀକରଣ ଦ୍ଵାରା ଏହା n³ ଆକାରରେ ପ୍ରକାଶିତ ହେଲା ନାହିଁ । ତେଣୁ 106480 ଘନସଂଖ୍ୟା ନୁହେଁ ।

BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(e)

Question 4.
675 ରେ ଅଚୂନ କେତେ ଗୁଣିଲେ, ଗୁଣଫଳ ଏକ ଘନସଂଖ୍ୟା ହେବ ?
ସମାଧାନ :
675 = 3 × 3 × 3 × 5 × 5 = (3)³ × (5)²
∴ 675 ର ଉତ୍ପାଦକୀକରଣରେ
ଗୁଣନୀୟକ 3 ର ସଂଖ୍ୟା = 3
ଗୁଣନୀୟକ 5 ର ସଂଖ୍ୟା = 2
∴ 675 କୁ ଅନ୍ୟୁନ 5 ଦ୍ବାରା ଗୁଣିଲେ ଗୁଣଫଳ ଏକ ଘନସଂଖ୍ୟା ହେବ ।

Question 5.
8640 କୁ ଅତିକମ୍‌ରେ କେଉଁ ସଂଖ୍ୟାଦ୍ଵାରା ଭାଗକଲେ, ଭାଗଫଳ ଏକ ଘନସଂଖ୍ୟା ହେବ ?
ସମାଧାନ :
8640 = 2 × 2 × 2 × 2 × 2 × 2 × 3 × 3 × 3 × 5 = (2)³ × (2)³ × (3)³ × 5
ଉତ୍ପାଦକୀକରଣ ଜଣାପଡ଼ିଲା ଯେ,
5 ବ୍ୟତୀତ ଅନ୍ୟ ମୌଳିକ ଉତ୍ପାଦକମାନ n’ ଆକାରରେ ପ୍ରକାଶିତ ହୋଇଛନ୍ତି ।
∴ ସଂଖ୍ୟାଟିକୁ 5 ଦ୍ଵାରା ଭାଗକଲେ, ଭାଗଫଳ ଏକ ଘନସଂଖ୍ୟା ହେବ ।

Question 6.
ଏକ ସମଘନର ଏକ ଧାରର ଦୈର୍ଘ୍ୟ 15 ସେ.ମି. ହେଲେ, ଏହାର ଆୟତନ କେତେ ?
ସମାଧାନ :
ଏକ ସମଘନର ଏକ ଧାରର ଦୈର୍ଘ୍ୟ = 15 ସେ.ମି.
ଏହାର ଆୟତନ = (ବାହୁର ଦୈର୍ଘ୍ୟ)³ = 15³ ଘନ ସେ.ମି. = 3375 ଘନ ସେ.ମି.
ସମଘନର ଆୟତନ 3375 ଘନ ସେ.ମି. ।

BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(e)

Question 7.
ଗୋଟିଏ ସମଘନାକାର ପାଣିଟାଙ୍କିର ଗଭୀରତା 2 ମିଟର । ଏଥୁରୁ ଦୈନିକ 1000 ଲିଟର ପାଣି କାଢ଼ି ନିଆଗଲେ, କେତେ ଦିନରେ ପାଣିତକ ଶେଷ ହୋଇଯିବ ?
ସମାଧାନ :
ସମଘନାକାର ପାଣିଟାଙ୍କିର ଗଭୀରତା 2 ମିଟର ।
ଏହାର ଘନଫଳ = (ବାହୁର ଦୈର୍ଘ୍ୟ)³ = (2 ମିଟର)³ = 8 ଘନମିଟର
1 ଘନମିଟର ପାଣି = 1000 ଲିଟର ପାଣି । 8 ଘନମିଟର ପାଣି = 8000 ଲିଟର ପାଣି ।
ପାଣିଟାଙ୍କିରେ ଥ‌ିବା ପାଣିର ଆୟତନ = 8000 ଲିଟର
ଦୈନିକ 1000 ଲିଟର ଲେଖା କାଢ଼ିନେଲେ ପାଣିତକ ଶେଷ ହେବ 8000 ÷ 1000 = 8 ଦିନରେ ।

Question 8.
12 ମିଟର ଗଭୀର ଏକ ସମଘନାକାର ଗାତ ଖୋଳିବାକୁ ଘନ ମିଟରକୁ 25 ଟଙ୍କା ହିସାବରେ କେତେ ଖର୍ଚ୍ଚ ହେବ ?
ସମାଧାନ :
ସମଘନାକାର ଗାତର ଗଭୀରତା = 12 ମିଟର
ଏହାର ଆୟତନ = (ଗଭୀରତା)³ = (12)³ ଘନମିଟର = 1728 ଘନମିଟର
1 ଘନମିଟର ଗାତଖୋଳିବାରେ ଖର୍ଚ୍ଚ ହୁଏ 25 ଟଙ୍କା ।
1728 ଘନମିଟର ଗାତ ଖୋଳିବାରେ ଖର୍ଚ୍ଚହେବ 1728 × 25 ଟଙ୍କା = 43200 ଟଙ୍କା ।

Question 9.
3 ର ଗୁଣିତକ ଯେ କୌଣସି ପାଞ୍ଚଗୋଟି ଗଣନ ସଂଖ୍ୟାର ଘନ ନିର୍ଣ୍ଣୟ କର ଏବଂ ଦର୍ଶାଅ ଯେ, 3 ର ଗୁଣିତକ ଯେ କୌଣସି ଗଣନ ସଂଖ୍ୟାର ଘନ, 27ର ଏକ ଗୁଣିତକ ଅଟେ ।
ସମାଧାନ :
ମନେକର ସଂଖ୍ୟା ପାଞ୍ଚୋଟି ଯେଉଁମାନେ 3ର ଗୁଣିତକ; ଯଥା – 6, 9, 12, 15, 18 ।
(6)³= (2 × 3)³ = 2³ × 3³ = 8 × 27; ଅର୍ଥାତ୍ (6)³, 27 ର ଗୁଣିତକ ଏବଂ 6³ = 216
(9)³ = (3 × 3³ = 3³ x 3³ = 27 × 27; ଅର୍ଥାତ୍ (9)³, 27 ର ଗୁଣିତକ ଏବଂ 9³ = 729
(12)³ = (4 × 3)³ = 4³ × 3³ = 64 × 27; ଅର୍ଥାତ୍ (12)³, 27 ର ଗୁଣିତକ ଏବଂ 12³ = 1728
(15)³ = (5 × 3)³ = 5³ × 3³ = 125 × 27; ଅର୍ଥାତ୍ (15)³, 27 ର ଗୁଣିତକ ଏବଂ 15³ = 3375
(18)³= (6 × 3)³ = 6³ × 3³ = 216 × 27; ଅର୍ଥାତ୍ (18)³, 27 ର ଗୁଣିତକ ଏବଂ 18³ = 5832

n ∈ N ହେଲେ 3n ଏକ ସଂଖ୍ୟା, ଯାହା 3ର ଗୁଣିତକ ।
(3n)³ = 27n³ ; ଅର୍ଥାତ୍ (3n), 27ର ଗୁଣିତକ ଅଟେ ।

BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(e)

Question 10.
ଦର୍ଶାଅ ଯେ , ଯୁଗ୍ମ ସଂଖ୍ୟାର ଘନ ଏକ ଯୁଗ୍ମ ସଂଖ୍ୟା ଏବଂ ଅଯୁଗ୍ମ ସଂଖ୍ୟାର ଘନ ଏକ ଅଯୁଗ୍ମ ସଂଖ୍ୟା ।
ସମାଧାନ :
n ∈ Z ହେଲେ, 21 ଏକ ଯୁଗ୍ମସଂଖ୍ୟା ଏବଂ (2n + 1) ଏକ ଅଯୁଗ୍ମ ସଂଖ୍ୟା ।
ଯୁଗ୍ମସଂଖ୍ୟା 2n ଘନ = (2n)³ = 8n³ = 2(4n³) [4n³ ∈ Z]
ଅର୍ଥାତ୍ 2nର ଘନ ଏକ ଯୁଗ୍ମସଂଖ୍ୟା ।
ପୁନଶ୍ଚ ଅଯୁଗ୍ମ ସଂଖ୍ୟା (2n + 1 )ର ଘନ = (2n + 1)³ = 8n³ + 12n² + 6n + 1
= 2(4n³ + 6n² + 3n) + 1
ଏଠାରେ 44n³ + 6n² + 3n ∈ Z
(2n + 1)ର ଘନ ଏକ ଅଯୁଗ୍ମ ସଂଖ୍ୟା ।

BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(b)

Odisha State Board BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(b) Textbook Exercise Questions and Answers.

BSE Odisha Class 8 Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(b)

Question 1.
ସଂକ୍ଷିପ୍ତ ବର୍ଗ ନିର୍ଣ୍ଣୟ ପ୍ରଣାଳୀ ଅବଲମ୍ବନରେ ନିମ୍ନ ସଂଖ୍ୟାଗୁଡ଼ିକର ବର୍ଗ ସ୍ଥିର କର ।
45, 55, 85, 105, 155, 255
ସମାଧାନ :
45² = 2025 (4 × 5 = 20)
55² = 3025 (5 × 6 = 20)
85² = 7225 (8 × 9 = 72)
105² = 11025 (10 × 11 = 110)
155² = 24025 (15 × 16 = 240)
255² = 65025 (25 × 26 = 650)

Question 2.
ସଂକ୍ଷିପ୍ତ ପ୍ରଣାଳୀରେ ନିମ୍ନ ସଂଖ୍ୟାଗୁଡ଼ିକର ବର୍ଗ ନିର୍ଣ୍ଣୟ କର ।
27, 37, 46, 78, 98
a² – b² = (a + b)(a – b)
⇒ a² = (a + b)(a – b) + b²
ସମାଧାନ :
27² = (27 + 3)(27 – 3) + 3² =30 × 24 + 9 = 729
37² = (37 + 3)(37 – 3) + 3² =40 × 34 + 9 = 1369
46² = (46 + 4) (46 – 4) + 4² = 50 × 42 + 16 = 2116
78² = (78 + 2)(78 – 2) + 2² = 80 × 76 + 4 = 6084
98² = (98 + 2)(98 – 2) +2² = 100 × 96 + 4 = 9604

BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(b)

Question 3.
(a + b)² = a² + 2ab + b² ଅଭେଦର ପ୍ରୟୋଗରେ 19, 102, 107 ର ବର୍ଗ ସ୍ଥିର କର ।
ସମାଧାନ :
19² = (10 + 9)² = 10² + 2 × 10 × 9 + 9² = 100 + 180 + 81 = 361
102² = (100 + 2)² = 100² + 2 × 100 × 2 + 2² = 10000 + 400 + 4 = 10404
107² = (100 + 7)² = 100² + 2 × 100 × 7 + 7² = 10000 + 1400 + 49 = 11449

Question 4.
(a – b)² = a² -2ab + b² ଅଭେଦର ପ୍ରୟୋଗରେ 93, 95, 98 ର ବର୍ଗ ସ୍ଥିର କର ।
ସମାଧାନ :
93² = (100 – 7)² = 100² – 2 × 100 × 7 + 7² = 10000 – 1400 + 49 = 8649
95² = (100 – 5)² = 100² – 2 × 100 × 5 + 5² = 10000 – 1000 + 25 = 9025
98² = (100 – 2)² = 100² – 2 × 100 × 2 + 2² = 10000 – 400 + 4 = 9604

Question 5.
52² = (5² + 2) 100 + 2² = 2704, 57² = (5² + 7) 100 + 72 = 3249
ଉପରୋକ୍ତ ଦୁଇଟି ବର୍ଗ ନିରୂପଣ ପ୍ରଣାଳୀ ଅନୁସରଣରେ 51, 54, 56, 58, 59 ର ବର୍ଗମାନ ସ୍ଥିର କର ।
ସମାଧାନ :
51² = (5² + 1) × 100 + 1² = 2601
54² = (5² + 4) × 100 + 4² = 2916
56² = (5² + 6) × 100 + 6² = 3136
58² =(5² + 8) × 100 + 8²= 3364
59² = (5² + 9) × 100 + 9² = 3481

BSE Odisha 8th Class Maths Solutions Algebra Chapter 6 ବର୍ଗ-ବର୍ଗମୂଳ ଏବଂ ଘନ-ଘନମୂଳ Ex 6(b)

Question 6.
45² = 4 × (4 + 1) 100 + 5²,
55² = 5 × (5 + 1) 100 + 5² 106
65² =6 × (6+ 1) 100 + 5²
ଉପରୋକ୍ତ ବର୍ଗ ନିରୂପଣ ପ୍ରଣାଳୀ ଅନୁସରଣରେ 35, 75, 95, 115, 205 ସଂଖ୍ୟାଗୁଡ଼ିକର ବର୍ଗ ନିରୂପଣ କର ।
ସମାଧାନ :
35² = 3 x (3 + 1) x 100 + 5² = 1225
75² = 7 x (7 + 1) x 100 + 5² = 5625
95² = 9 x (9 + 1) x 100 + 5² = 9025
115² = 11 x (11 + 1) x 100 + 5² = 13225
205² = 20 x (20 + 1) x 100 + 5² =42025

Question 7.
0.12, 1.11. 0.003 ପରିମେୟ ସଂଖ୍ୟାଗୁଡ଼ିକର ବର୍ଗ ସ୍ଥିର କର ।
ସମାଧାନ :
\((0.12)^2=\left(\frac{12}{100}\right)^2=\frac{144}{10000}=0.0144\)
\((1.11)^2=\left(\frac{111}{100}\right)^2=\frac{12321}{10000}=1.2321\)
\((0.003)^2=\left(\frac{3}{1000}\right)^2=\frac{9}{1000000}=0.000009\)

Question 8.
ନିମ୍ନଲିଖତ ପରିମେୟ ସଂଖ୍ୟାଗୁଡ଼ିକ ମଧ୍ୟରୁ କେଉଁ ସଂଖ୍ୟାଗୁଡ଼ିକ ପୂର୍ଣବର୍ଗ ସଂଖ୍ୟା ସ୍ଥିର କର ।
121, 1009, 65.61, 0.00256, 0.36, 12.321
ସମାଧାନ :
121 = 11², 65.61 = (8.1)², 0.36 = (0.6)²
ତେଣୁ 121, 65.61 ଓ 0.36 ସଂଖ୍ୟାଗୁଡ଼ିକ ପୂର୍ବବର୍ଗ ସଂଖ୍ୟା ।